

WISACD

28/05/2024 ISOL-FRANCE

Lecanuet Samuel

LP2iB 1st year PhD student

Motivation	2024 experiment	Simulations	Results	Conclusion
Outline				

- Motivation
- 2024 experiment
- Simulations
- Results
- Conclusion

For a Fermi transition and an unpolarized nucleus :

$$N(\theta_{\beta\nu}, W_{\beta}) \mathrm{d}W_{\beta} \propto \left(1 + a \frac{p_{\beta} p_{\nu}}{W_{\beta} W_{\nu}} \cos(\theta_{\beta\nu}) + b \gamma \frac{m_e}{W_{\beta}}\right) \mathrm{d}W_{\beta}$$

For a Fermi transition and an unpolarized nucleus :

$$N(\theta_{\beta\nu}, W_{\beta}) \mathrm{d}W_{\beta} \propto \left(1 + a \frac{p_{\beta} p_{\nu}}{W_{\beta} W_{\nu}} \cos(\theta_{\beta\nu}) + b \gamma \frac{m_e}{W_{\beta}}\right) \mathrm{d}W_{\beta}$$

angular correlation coefficient

Probe right-handed neutrino in <u>scalar</u> contribution

For a Fermi transition and an unpolarized nucleus :

$$N(\theta_{\beta\nu}, W_{\beta}) \mathrm{d}W_{\beta} \propto \left(1 + a \frac{p_{\beta} p_{\nu}}{W_{\beta} W_{\nu}} \cos(\theta_{\beta\nu}) + b \gamma \frac{m_e}{W_{\beta}}\right) \mathrm{d}W_{\beta}$$

angular correlation coefficient

Probe right-handed neutrino in <u>scalar</u> contribution

Experimentally â is measured (contribution of a and

For a Fermi transition and an unpolarized nucleus :

$$N(\theta_{\beta\nu}, W_{\beta}) \mathrm{d}W_{\beta} \propto \left(1 + a \frac{p_{\beta} p_{\nu}}{W_{\beta} W_{\nu}} \cos(\theta_{\beta\nu}) + b \gamma \frac{m_e}{W_{\beta}}\right) \mathrm{d}W_{\beta}$$

b)

angular correlation coefficient

Probe right-handed neutrino in <u>scalar</u> contribution

Experimentally \tilde{a} is measured (contribution of a and

Kinematic change

Beta delayed proton emission

At rest :

 \overline{E}_{shift}

High precision measurement

Some previous measurements:

Delayed gamma of ¹⁸ Ne (1997):	a = 1.06(19)	V.Egorov and al. Nucl. Phys. A, 621 (1997), 745
Delayed proton of ³² Ar (1999):	$\tilde{a} = 0.9989(52)_{stat}(39)_{sys}$	Adelberger and al. PRL 83 (1999) 1299
Recoil of ³⁸ K ^m (2005):	$\tilde{a} = 0.9981(30)_{stat}(37)_{sys}$	A.Gorelov and al. PRL 94 (2005) 142501
Delayed proton of ³² Ar (2018):	$\tilde{a} = 1.01(3)_{stat}(2)_{sys}$	V.Araujo-Escalona and al. PRC 101 (2020) 5, 055501

Motivation	2024 experiment	Simulations	Results	Conclusion
WISArD at ISOL	.DE			
³² Ar production :		$p + CaO \rightarrow Ar$		
 From Proton Synchro Booster 2.5 μA at 1.4 GeV 	otron	CaO targetNanostructured powder	 ISOLDE HRS A/Q selection 30 keV 	

Motivation	2024 experiment	Simulations	Results	Conclusion
WISArD				
				14

Motivation	2024 experiment	Simulations	Results	Conclusion
WISArD				

Tower: MCP

Tower: MCP

- 0.6 µm
- 6 µm

Tower: SiPMs

3x3 SiPMs: Onsemi MicroFJ-60035-TSV Plastic Scintillator: EJ212

 β spectrum in coincidence with silicon detectors

2024 Data taking: SiPM matrix

β spectrum in coincidence with silicon detectors

Tower: Silicon detectors

Motivation	2024 experiment	Simulations	Results	Conclusion
CR	ADLE++		Geant4	

Event generator:

- GitHub
- β , α , γ and proton decay implemented
- Precise β spectrum (corrections up to 10⁻⁴)
- Generate a decay chain with kinematics
- Able to generate in Beyond Standard Model cases

GitHub

CRADLE++

Geant4

Event generator:

- β , α , γ and proton decay implemented
- Precise β spectrum (corrections up to 10⁻⁴)
- Generate a decay chain with kinematics
- Able to generate in Beyond Standard Model cases

Generator:

- Efficient output CRADLE file reader
- Implantation point from SRIM

Geometry:

- Homogeneous magnetic field
- 48 silicon detectors implemented
- Energy deposit in plastic scintillator (no optical

simulation)

Motivation	2024 experiment	Simulations	Results	Conclusion
Extraction of	а			
Simulations				

Simulations

Simulations

Statistical error

2018*	200 000 events	$\Delta \tilde{a} = 0.027$
2021	700 000 events	$\Delta \tilde{a} = 0.017$
2024	12 000 000 events	$\Delta ilde{a} = 0.002$ (estimated)

Systematic error

Main sources	Uncertair		rtainty		Improvement	
	2018*	$\Delta \tilde{a}$	(estimated) 2024	$\Delta \tilde{a}$		
β-backscattering	~15%	17	~ 10%	< 10	Lower threshold	
Dead layer thickness	430 ± 300 nm	12	100 ± 5 nm	0.3	New detectors	
Catcher thickness	6.70 ± 0.15 μm	5	0.60 ± 0.02 μm	0.3	RBS measurement	
Source radius/position	± 3 mm	1	± 0.5 mm	0.2	MCP beam profile	
Detector position	± 1 mm	0.3	± 0.5 mm	0.2	Laser alignment	
Calibration	~ 5 keV	10	~ 1 keV	2	³³ Ar runs, new detectors	
		$x10^{-3}$		$x10^{-3}$		

*V. Araujo-Escalona PhysRevC.101.055501

Мо	tivation	2024 experiment	Simulations	Results	Conclusion
Extra	ction of	\boldsymbol{a}			
Final r	esult				
2018 : 2021 : 2024 :	$\tilde{a} = 1.007(32)_{stat}$ $\tilde{a} = 1.002(17)_{stat}$ $\tilde{a} = ?$	(25) _{sys} On going syste On going anal	ematic analysis lysis		

Other experiment @ WISArD: INESS

- Beta-Spectrum shape measurement of ¹⁴⁴In
- Effect of weak magnetism

Thanks to the whole WISArD team

P. Alfaurt, P. Ascher, D. Atanasov, B. Blank, F. Cresto, L. Daudin, X. Fléchard, G.Frémont, M. Gerbaux, J. Giovinazzo, S. Grévy, J. Ha, C. Knapen, R.Lica, M. Pomorski, M.Roche, N. Severijns, S. Vanlangendonck, M. Versteegen, D. Zakoucky

We acknowledge the support of the ISOLDE technical team

Beyond Standard Model : $C_V = C'_V = 1$ $C_A = C'_A \simeq 1.27$ $C_S = ?$ $C_T = ?$

$$a\xi = |M_F|^2 (-C_S^2 - C_S'^2 + C_V^2 + C_V'^2) - \frac{|M_{GT}|^2}{3} (-C_T^2 - C_T'^2 + C_A^2 + C_A'^2)$$

$$b\xi = 2|M_F|^2(C_SC_V + C'_SC'_V) + 2|M_{GT}|^2(C_TC_A + C'_TC'_A)$$

$\xi = |M_F|^2 (C_S^2 + C_S'^2 + C_V'^2 + C_V'^2) + |M_{GT}|^2 (C_T^2 + C_T'^2 + C_A^2 + C_A'^2)$

$$\tilde{a} = \frac{a}{1 + b\left\langle\frac{m_e}{E_0}\right\rangle}$$

RBS measurement

Proton beam at 1.2 MeV Angle of detection 135°

Annex: MCP reconstruction

Usual formula

$$x = \frac{Q_B + Q_C - Q_A - Q_D}{Q_A + Q_B + Q_C + Q_D}$$

$$y = \frac{Q_B - Q_C + Q_A - Q_D}{Q_A + Q_B + Q_C + Q_D}$$

New empirical formula

$$x = -\frac{\log\left(\frac{Q_B Q_C}{Q_A Q_D}\right)}{\log\left(\frac{Q_A Q_B Q_C Q_D}{(Q_A + Q_B + Q_C + Q_D)^4}\right)}$$

$$y = -\frac{\log\left(\frac{Q_B Q_D}{Q_A Q_C}\right)}{\log\left(\frac{Q_A Q_B Q_C Q_D}{(Q_A + Q_B + Q_C + Q_D)^4}\right)}$$

Corners gain match Quick algorithm to fit the image with the mask

-	•	2	:	0	1
٠.	•	•	•	۲	•
*•	•	•	•	-	1
10	•	۲	٠	٠	
-0	۲	۲	•		6.
-	•	0			۲

Final image

