

PIPERADE @LP2iB

PIPERADE @LP2iB

PIPERADE @LP2iB and @DESIR

PIPERADE = 2 cylindrical traps in a 7-Tesla magnet

P. Ascher et al., PIPERADE: A double Penning trap for mass separation and mass spectrometry at DESIR/SPIRAL2, Nucl. Instrum. Methods Phys. Res. A 1019 (2021) 165857

- Strong homogeneous magnetic field : radial confinement (2 homogeneous regions < 1 ppm over 1 cm³)
- Weak quadrupolar electrostatic field : axial confinement (correction electrodes to limit the anharmonicities)
- \rightarrow Superposition of 3 motions with 3 eigen frequencies:
 - v_z : Axial motion (~100 kHz)
 - v_+ : Reduced cyclotron motion (~ MHz)
 - v₋ : Magnetron motion (~ kHz) (mass-independent)

- Strong homogeneous magnetic field : radial confinement (2 homogeneous regions < 1 ppm over 1 cm³)
- Weak quadrupolar electrostatic field : axial confinement (correction electrodes to limit the anharmonicities)
- \rightarrow Superposition of 3 motions with 3 eigen frequencies:
 - v_z : Axial motion (~100 kHz)
 - v_+ : Reduced cyclotron motion (~ MHz)
 - v₋ : Magnetron motion (~ kHz) (mass-independent)

- Strong homogeneous magnetic field : radial confinement (2 homogeneous regions < 1 ppm over 1 cm³)
- Weak quadrupolar electrostatic field : axial confinement (correction electrodes to limit the anharmonicities)
- \rightarrow Superposition of 3 motions with 3 eigen frequencies:
 - v_z : Axial motion (~100 kHz)
 - v_+ : Reduced cyclotron motion (~ MHz)
 - v₋ : Magnetron motion (~ kHz) (mass-independent)

- Strong homogeneous magnetic field : radial confinement (2 homogeneous regions < 1 ppm over 1 cm³)
- Weak quadrupolar electrostatic field : axial confinement (correction electrodes to limit the anharmonicities)
- \rightarrow Superposition of 3 motions with 3 eigen frequencies:
 - v_z : Axial motion (~100 kHz)
 - v_+ : Reduced cyclotron motion (~ MHz)
 - v₋ : Magnetron motion (~ kHz) (mass-independent)

- Strong homogeneous magnetic field : radial confinement (2 homogeneous regions < 1 ppm over 1 cm³)
- Weak quadrupolar electrostatic field : axial confinement (correction electrodes to limit the anharmonicities)
- \rightarrow Superposition of 3 motions with 3 eigen frequencies:
 - v_z : Axial motion (~100 kHz)
 - v_+ : Reduced cyclotron motion (~ MHz)
 - v₋ : Magnetron motion (~ kHz) (mass-independent)

Cyclotron frequency
$$v_c = \frac{qB}{2\pi m}$$
 $v_c \approx v_+ + v_-$

- Strong homogeneous magnetic field : radial confinement (2 homogeneous regions < 1 ppm over 1 cm³)
- Weak quadrupolar electrostatic field : axial confinement (correction electrodes to limit the anharmonicities)
- \rightarrow Superposition of 3 motions with 3 eigen frequencies:
 - v_z : Axial motion (~100 kHz)
 - v_+ : Reduced cyclotron motion (~ MHz)/
 - v₋ : Magnetron motion (~ kHz) (mass-independent)

Cyclotron frequency $v_c = \frac{qB}{2\pi m}$ $v_c \approx v_+ + v_-$

Amplitude of these motions can be modified by buffer gas or RF-excitations

- ✓ Dipolar to increase/decrease a motion
- Quadrupolar to convert one motion into another one

- Strong homogeneous magnetic field : radial confinement (2 homogeneous regions < 1 ppm over 1 cm³)
- Weak quadrupolar electrostatic field : axial confinement (correction electrodes to limit the anharmonicities)
- \rightarrow Superposition of 3 motions with 3 eigen frequencies:
 - v_z : Axial motion (~100 kHz)
 - v_+ : Reduced cyclotron motion (~ MHz)/
 - v_: Magnetron motion (~ kHz) (mass-independent)

Cyclotron frequency $v_c = rac{qB}{2\pi m}$ $v_c pprox v_+ + v_-$

- Amplitude of these motions can be modified by buffer gas or RF-excitations
 - ✓ Dipolar to increase/decrease a motion
 - ✓ Quadrupolar to convert one motion into another one
- Three main purification/measurement techniques :
 - Buffer gas cooling
 - Time-of-Flight Ion-Cyclotron-Resonance (ToF-ICR)
 - Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR)

Technical developments on PIPERADE

New position sensitive MCP

+ Reconstruction of the position on the user interface (PIPERADE Trap Scanner for DESIR) :

MCP + Delay line

Schematic view of a delay line

PI-ICR (Phase-Imaging Ion-Cyclotron-Resonance)

Projection of radial motion phases on a position-sensitive detector

$$\nu_c = \nu_+ + \nu_- = \frac{qB}{2\pi m}$$
$$\nu = \frac{\Phi + 2\pi n}{2\pi t}$$

M. Hukkanen et al. Phys. Rev. C **107** (2023) 014306

- High sensitivity ("non scanning method")
- Gain of a factor of 5-10 in precision and 40 in resolution compared to ToF-ICR (up to $R = 10^7$)
- Measurement of ground state masses and isomer excitation energies
- Capable of separate isomers \rightarrow high-resolution purification for DESIR

Initial conditions

Eliseev, S et al. Appl. Phys. B 114 (2014) 107–128

Eliseev, S et al. Appl. Phys. B 114 (2014) 107–128

Eliseev, S et al. Appl. Phys. B 114 (2014) 107-128

Eliseev, S et al. Appl. Phys. B **114** (2014) 107–128

Eliseev, S et al. Appl. Phys. B **114** (2014) 107–128

Eliseev, S et al. Appl. Phys. B **114** (2014) 107–128

First 1-sec PI-ICR in February

Eliseev, S et al. Appl. Phys. B **114** (2014) 107–128

First 1-sec PI-ICR in February

First PI-ICR frequency measurement with PIPERADE :

Choose t so that $\phi_c = 0$ and thus $v_c = \frac{N}{t}$

For ³⁹K, we obtain :

 $v_c(PI-ICR) = 2740730,1 \pm 0,1 Hz$ $v_c(ToF-ICR) = 2740730,25 \pm 0,05Hz$

First 1-sec PI-ICR in February

First PI-ICR frequency measurement with PIPERADE :

Choose t so that $\phi_c = 0$ and thus $v_c = \frac{N}{t}$

For ³⁹K, we obtain :

 $v_c(PI-ICR) = 2740730,1 \pm 0,1 Hz$ $v_c(ToF-ICR) = 2740730,25 \pm 0,05Hz$

First 1-sec PI-ICR in February

First PI-ICR frequency measurement with PIPERADE :

Choose t so that $\phi_c = 0$ and thus $v_c = \frac{N}{t}$

For ³⁹K, we obtain :

 $v_c(PI-ICR) = 2740730,1 \pm 0,1 Hz$ $v_c(ToF-ICR) = 2740730,25 \pm 0,05Hz$

First 1-sec PI-ICR in February

First PI-ICR frequency measurement with PIPERADE :

Choose t so that $\phi_c = 0$ and thus $v_c = \frac{N}{t}$

For ³⁹K, we obtain :

 $v_c(PI-ICR) = 2740730,1 \pm 0,1 Hz$ $v_c(ToF-ICR) = 2740730,25 \pm 0,05Hz$

However we still have some issues :

- Deformation of the image on the final detector

However we still have some issues :

- Deformation of the image on the final detector
- Issues with electrode switch

≻

However we still have some issues :

- Deformation of the image on the final detector
- Issues with electrode switch
- Trap center is moving -

22

20 18 16

14 12

position / mm 8

However we still have some issues :

- Deformation of the image on the final detector
- Issues with electrode switch
- Trap center is moving

And work to be done :

- Mass measurements with PI-ICR

22

20 18 16

position /

However we still have some issues :

- Deformation of the image on the final detector
- Issues with electrode switch
- Trap center is moving

And work to be done :

- Mass measurements with PI-ICR
- Investigation of systematic errors

22

20 18 16

14

E 10

position /

However we still have some issues :

- Deformation of the image on the final detector
- Issues with electrode switch
- Trap center is moving

And work to be done :

- Mass measurements with PI-ICR
- Investigation of systematic errors
- Investigation of buffer gas cooling for large bunches (>100) (Need for a new MCP chamber)

22

20 18 16

14

E 10

position /

However we still have some issues :

- Deformation of the image on the final detector
- Issues with electrode switch
- Trap center is moving

And work to be done :

- Mass measurements with PI-ICR
- Investigation of systematic errors
- Investigation of buffer gas cooling for large bunches (>100) (Need for a new MCP chamber)

Before moving to GANIL (beginning of 2026)

Thanks for your attention !

and to **D. Atanasov (former Post-Doc), M. Flayol (PhD),** P. Alfaurt, P. Ascher, B. Blank, L. Daudin, M. Gerbaux, S. Grévy, M. Hukkanen, A. Husson, B. Lachacinski, S. Perard, A. de Roubin, C. Roumegou (new post-doc)

ToF-ICR mass measurements

High-resolution phase separation

Possible future improvement @DESIR: laser cooling ?

« Doppler and sympathetic cooling for the investigation of short-lived radioactive ions », S. Sels et al., Phys. Rev. Research 4, 033229 (2022)