

Status of MLLTRAP

- Status of MLLTRAP 1.
- 2. Calculations for RFQCB
- 3. Emittance measurements

Sophie Morard Laboratoire de physique des 2 infinis Irène Joliot Curie

Supervisors : Luc Perrot & Enrique Minaya Ramirez

ISOL-France VI

ALTO-LEB : Accélérateur Linéaire & Tandem d'Orsay – Low Energy Beam

MLLTRAP : Maier-Leibnitzen Laboratory Trap

Double Penning trap spectrometer

- Penning trap : superposition of high magnetic field and low electrostatic field to confine in 3D
- Preparation trap : Isobaric separation with buffer gas cooling
- Measurement trap : Cyclotron frequency measurements

MLLTRAP – Physical case at ALTO-LEB

MLLTRAP – Magnet

Temperature stabilisation

- First design failed
- Second one in progress

MLLTRAP – Magnet

3

magnex scientific

Temperature stabilisation

Helium recovery line

- Installed and tested in May with POLAREX
- Soon connected to MLLTRAP

- First design failed
- Second one in progress

Emittance measurements

• Finding the acceptance

• Finding the acceptance

Ζ

- Finding the acceptance
- Applied voltage on injection and ejection (First electrode 29975 V)

• Finding the acceptance

• Applied voltage on injection and ejection (First electrode 29975 V)

• Finding the acceptance

• Applied voltage on injection and ejection (First electrode 29975 V)

28/05/2024

ISOL-France VI – Sophie Morard

Gas pressure optimisation :

- 5 cases studied : best transmission
- Initial distribution : Ellipse of acceptance of 50000 particles

Gas pressure optimisation :

- 5 cases studied : best transmission
- Initial distribution : Ellipse of acceptance of 50000 particles

Gas pressure optimisation :

- 5 cases studied : best transmission
- Initial distribution : Ellipse of acceptance of 50000 particles

Allison emittancemeter

o 2D measurements in horizontal and vertical plans

Allison emittancemeter

Measurement of horizontal phase space

Measurement of vertical phase space

o 2D measurements in horizontal and vertical plans

meter

Allison emittancemeter

Measurement of horizontal phase space

Measurement of vertical phase space

- o 2D measurements in horizontal and vertical plans
- Parametric studies:
 - Error of emittancemeter : Measurement steps
 - Focusing effect : Quadrupoles voltage
 - Sensitivity of target-ions source vault : Position of extraction electrode and temperature of oven

meter

Part of control command interface of Emittancemeter

Results of parametric studies : Step of measurements

30 Position initiale (mm) -8 Position finale (mm) 16 Pas de position (mm) 0,25 Nb positions HT max (V) Angle max HT min (V) Angle min HT step (V) Angle step Nb Tension 61 ChargeBeam ADC_iter - 10

T_acceleration (kV)

Part of control command interface of Emittancemeter

30 Position initiale (mm) -8 Position finale (mm) 16 Pas de position (mm) 0,25 Nb positions HT max (V) Angle max HT min (V) Angle min HT step (V) Angle step Nb Tension ChargeBeam ADC_iter - 10

T acceleration (kV)

Part of control command interface of Emittancemeter

Minimum of emittance at position 60 mm in both plans

Vertical plane

Horizontal plane

Vertical plane

Problem : Emittance not conservative

Vertical plane

🔶 50 mm

2.0

1.5

1.0

0.5

ε_{rms}(π. mm. mrad)

Problem : Emittance not conservative

Influence of the shape of the beam on the analysis ?

Results of parametric studies : Oven current

Study of target-ion source different :

- Additional oven withdraw
- Target of C doped with Cs used in oven to simulate radioactive beam

28/05/2024

Results of parametric studies : Oven current

Study of target-ion source different :

- Additional oven withdraw
- Target of C doped with Cs used in oven to simulate radioactive beam

Results of parametric studies : Oven current

Study of target-ion source different :

- Additional oven withdraw
- Target of C doped with Cs used in oven to simulate radioactive beam

« Small » beam in Horizontal plan

Results of parametric studies : Oven current

Study of target-ion source different :

- Additional oven withdraw
- Target of C doped with Cs used in oven to simulate radioactive beam

« Small » beam in Horizontal plan

Profile measurement

Study of target-ion source different :

- Additional oven withdraw
- Target of C doped with Cs used in oven to simulate radioactive beam

Study of target-ion source different :

- Additional oven withdraw
- Target of C doped with Cs used in oven to simulate radioactive beam

Conclusion

> MLLTRAP :

- Beam line soon connected to the traps
- Helium recuperation still has to be tested with MLLTRAP
- o Stabilisation of magnet temperature

> RFQCB :

- Electronics needed to start testing
- Calculations :
 - Decoupling of injection and extraction
 - Effect of q parameter
 - Effect of grouped particles
 - Buncher

> Emittance analysis :

- o Influence of beam shape to study further
- Checking errors
- > Perspectives : Transport calculations from target-ion source to exit of RFQCB

Thank you for your attention

Emittance

- **Emittance** : surface representing all the points in the phase space of the particles of the beam, with a factor of π .
- Twiss parameters : $\epsilon = \gamma x^2 + 2\alpha x x' + \beta x'^2$

Emittance is conservative

Target-ion source

Used definitions:

Associated errors calculations:

$$\epsilon_{rms} = \sqrt{\sigma_x^2 \sigma_{x'}^2 - \sigma_{xx'}^2}$$
$$\sigma_x = \sqrt{w(x^2) - w(x)^2}$$
$$\sigma_{x'} = \sqrt{w(x'^2) - w(x')^2}$$
$$\sigma_{xx'} = w([x - w(x)][x' - w(x')])$$
$$w(x) = \frac{\sum_i x_i I_i}{\sum_i I_i}$$

$$\delta \epsilon = \sqrt{\left(\frac{\sigma_x \sigma_{x'}^2}{\epsilon}\right)^2} \delta \sigma_x^2 + \left(\frac{\sigma_{x'} \sigma_x^2}{\epsilon}\right)^2 \delta \sigma_{x'}^2 + \left(\frac{\sigma_{xx'}}{\epsilon}\right)^2 \delta \sigma_{xx'}^2}{\delta \sigma_{xx'}}$$

$$\delta \sigma_{xx'} = \sqrt{\sum_i \left(\frac{\partial \sigma_{xx'}}{\partial x_i}\right)^2 \delta x^2 + \sum_i \left(\frac{\partial \sigma_{xx'}}{\partial x_i'}\right)^2 \delta x'^2 + \sum_i \left(\frac{\partial \sigma_{xx'}}{\partial I_i}\right)^2 \delta I^2}$$

$$\delta \sigma_x = \sqrt{\left(\frac{1}{2\sigma_x}\right)^2 \delta w^2 (x^2) + \left(\frac{w(x)}{\sigma_x}\right)^2 \delta w^2 (x)}$$

$$\delta w = \sqrt{\sum_i \left(\frac{\partial w}{\partial x_i}\right)^2 \delta x^2 + \sum_i \left(\frac{\partial w}{\partial I_i}\right)^2 \delta I^2}$$

$$\delta w = \sqrt{\sum_i \left(\frac{\partial w}{\partial x_i}\right)^2 \delta x^2 + \sum_i \left(\frac{\partial w}{\partial I_i}\right)^2 \delta I^2}$$

$$\delta w = \sqrt{\sum_i \left(\frac{\partial w}{\partial x_i}\right)^2 \delta x^2 + \sum_i \left(\frac{\partial w}{\partial I_i}\right)^2 \delta I^2}$$

Emittance measurements analysis

- Position error: stepper motor precision $\delta x = 10 \ \mu m$
- Angular error: voltage supplier precision $\delta x' = 0,025 \text{ mrad}$
- Measured intensity error: electronics precision

Shield

g

δ

Rear slits

RR

FC

1/V/

z

↓ X Shifting

Emittance-

+V

Ē

L_{eff}

-V

Deflecting plate

x'

BEAM

Front slits

tâche 2. φο

 ϕ_c

tâche centrale sans excitation

Mesure de la phase ϕ_2

tâche 1, ϕ_1

- Projection des mouvements propres des ions sur un détecteur sensible à la position transverse, une galette à microcanaux avec des lignes à retard
- $\phi_c + 2\pi(n_+ + n_-) = 2\pi\nu_c t$
- Pouvoir de séparation : $\Delta \nu_c = \frac{\Delta \phi_c}{2\pi t_{acc}}$

S. Eliseev et al., Appl. Phys. B, 114 (2014) 107-128

Mesure de la phase ϕ_1