

In-gas-jet laser spectroscopy of Er with S³-LEB

Wenling Dong

IJCLab

May 29, 2024

Outline

- Off-line laser spectroscopy of Er with S³-LEB
- Analysis
 - o Isotope shift
 - Broadening mechanisms of spectral lines
 - Hyperfine structure
- Conclusion and outlook

cnrs

UNIVERSITE PARIS-SACLAY FACULTÉ DES SCIENCES

D'ORSAY

W

Université de Paris

General status of S3-LEB

[1] A. Ajayakumar et al.Nuclear Inst. and Methods in Physics Research, B 539 (2023)
[2] J. Romans et al. Nucl. Instrum. Meth. B 536 (2023)
[3] W.J. Childs et al., Phys. Rev. A 28 (1983) First commissioning case 415.2 nm

415 nm FES	Method	A (MHz)	B (MHz)
4f ¹² (³ H ₅) 6s6p, J=5	gas jet [1,2]	-147.1(7)	-1936(24)
	ref [3]	-146.6(3)	-1874(16)

Three different Er schemes explored in this work:

- 408.8 nm with injection-locked Ti:sa in gas jet.
- 400.8 nm with dual-etalon Ti:sa in gas jet.
- 408.8 nm, 400.8 nm, 393.7 nm with dual-etalon Ti:sa in gas cell.

Isotope shift extraction

cnrs

408.8 nm gas cell 408.8 nm gas jet ¹⁶⁴Er FWHM: ¹⁶⁴Er FWHM: 0.1 0.2 3142(147) MHz 183(18) MHz 10 10 1 10 10 10 11 10 10 10 ++++ +++ - Andrew Carles and 0.0 0.0 11 11 11 11 11+1 ¹⁶⁶Er FWHM: ¹⁶⁶Er FWHM: 1 3109(86) MHz 185(4) MHz 2.5 TOF spectrum after PILGRIM count (a.u.) count (a.u.) 0 TOF Er ions ¹⁶⁷Er FWHM: ¹⁶⁷Er FWHM: Normalized Ion Counts —— Gaussian fit ¹⁷⁰Er 0.5 3142(147) MHz 0.015 169(6) MHz ¹⁶⁷Er 0.5 ¹⁶⁶Er ¹⁶⁸Er 0.0 ***** Ч Ч 0.010 ¹⁶⁸Er FWHM: ¹⁶⁸Er FWHM: 2.5 3138(92) MHz 183(4) MHz 170Er 0.005 0.0 0 ****** ¹⁶⁴Er ¹⁷⁰Er FWHM: ¹⁷⁰Er FWHM: 0.000 2 200 300 400 500 100 0.5 2857(138) MHz 198(5) MHz 0 Time of flight - t_0 (TDC channel) 0.0 0 3000 -50005000 10000 -10001000 2000 4000 0 0 TOF gates range: 30 - 70 ns Frequency - v_0 (MHz) Frequency - v_0 (MHz)

Irène Joliot-Curie

ISOL-France 2024

7

$$\delta
u^{A',A}_i = F_i \delta \langle r^2
angle^{A',A} + M_i rac{A'-A}{A'A}$$

- Field shift: large F_i values \rightarrow high sensitivity to $\delta \langle r^2 \rangle^{A',A}$
- Mass shift: $M_i = M_{i,\text{NMS}} + M_{i,\text{SMS}}$ $M_{i,\text{NMS}} = \frac{\nu_i}{1836.15}$ King plot Atomic factors F_i and M_i

FACULTÉ DES SCIENCES

D'ORSAY

Type I using muonic X-ray $\lambda^{A',170}$ data: $(\Delta \nu_i^{A',A})_{\mathrm{mod}} = F_i (\Lambda^{A',A})_{\mathrm{mod}} + \mu M_i$

$$\begin{split} \delta \nu_i^{A',A} &= F_i \delta \langle r^2 \rangle^{A',A} + M_i \frac{A' - A}{A'A} \\ \bullet & \text{Field shift: large } F_i \text{ values } \to \text{ high sensitivity to } \delta \langle r^2 \rangle^{A',A} \end{split}$$

Limitations:

• Type I: too large uncertainties.

• FACULTÉ UNIVERSITE DES SCIENCES PARIS-SACLAY D'ORSAY

Type II using 583 nm reference:

[168,170]

Modified $\Delta v_{583}^{A',A}$ (MHz*u)

-2.00 - 1.75 - 1.50 - 1.25 - 1.00

[164,166]

 ${F_i\over F_{ref}}(\Delta
u^{A',A}_{ref})_{
m mod} + M_i -$

cnrs

[167,168]

 $F = 10524(260) \text{ MHz/fm}^2$

M = -6874(>404) GHz*u

 $(\Delta
u_i^{A',A})_{
m mod} =$

 $\times 10^{7}$

 $\chi^2 = 0.39$

3-

2

 F_i M_{ref}

408.8 nm gas jet

[166,167]

-0.75

-0.50 ×10⁷

$$\delta
u^{A',A}_i = F_i \delta \langle r^2
angle^{A',A} + M_i rac{A'-A}{A'A}$$

- Field shift: large F_i values \to high sensitivity to $\,\delta \langle r^2 \rangle^{A',A}$

• Mass shift:
$$M_i = M_{i,NMS} + M_{i,SMS}$$

 $M_{i,NMS} = \frac{\nu_i}{1836.15}$
King plot
Atomic factors F_i and M_i

Type I using muonic X-ray $\lambda^{A',170}$ data: $(\Delta \nu_i^{A',A})_{\mathrm{mod}} = F_i (\Lambda^{A',A})_{\mathrm{mod}} + \mu M_i$

• Type I: too large uncertainties.

FACULTÉ DES SCIENCES UNIVERSITE PARIS-SACLAY D'ORSAY

Type II using 583 nm reference:

[168,170]

Modified $\Delta v_{583}^{A',A}$ (MHz*u)

-2.00 - 1.75 - 1.50 - 1.25 - 1.00

[164,166]

 $(\Delta
u_i^{A',A})_{ ext{mod}} = \left[rac{F_i}{F_{ref}} (\Delta
u_{ref}^{A',A})_{ ext{mod}} + M_i -
ight]$

[167,168]

 $F = 10524(260) \text{ MHz/fm}^2$

M = -6874(>404) GHz*u

CNrs

 $\times 10^{7}$

 $\chi^2 = 0.39$

3.

2

 $\frac{F_i}{F}M_{ref}$

408.8 nm gas jet

[166,167]

-0.75 -0.50

 $\times 10^{7}$

$$\delta
u^{A^\prime,A}_i = F_i \delta \langle r^2
angle^{A^\prime,A} + M_i rac{A^\prime - A}{A^\prime A}$$

Field shift: large F_i values \rightarrow high sensitivity to $\delta \langle r^2 \rangle^{A',A}$

• Mass shift:
$$M_i = M_{i,\text{NMS}} + M_{i,\text{SMS}}$$

 $M_{i,\text{NMS}} = \frac{\nu_i}{1836.15}$
King plot
Atomic factors F_i and M_i

Type I using muonic X-ray $\lambda^{A',170}$ data: $(\Delta
u_i^{A',A})_{\mathrm{mod}} = F_i (\Lambda^{A',A})_{\mathrm{mod}} + \mu M_i$

Limitations:

- Type I: too large uncertainties.
- Type II: the 583 nm reference[1] assuming $M_{i,\text{SMS}} = 0$.

 $\delta \nu_{i, \text{ SMS}}^{A', A} = (0. \pm 0.5) \delta \nu_{i, \text{ NMS}}^{A', A}$ for $ns^2 - nsnp$ transitions

[1] H. Okamura, S. Matsuki, Phys. Rev. C 35 (1987)

ISOL-France 2024

Type I King plot + SMS estimation for 400.8 nm and 415.2 nm

Laboratoire de Physique des 2 Infinis

lrène Joliot-Curie

+

-[166,167]

-0.08

MS point

-0.04

Laboratoire de Physique des 2 Infinis

Type I King plot + SMS estimation for 400.8 nm and 415.2 nm

Reference 582.7 nm $6s^2$ -6s6p, J=6-7 theoretical calculation[5]

Atomic	(с1		(N	A IHz)	E (MI	B Hz)	F (GHz/fm ²)
states	Expt.	Calc.	Expt.	Calc.	Expt.	Calc.	Calc.
GS	0	0	-120.487	-120.66	-4552.984	-4880	-507.58
OS_{583}	17157	17392	-172.5	-164.3	-4440	-4602	-510.68

[5] V. Dzuba, V. Flambaum. UNSW. [6] H. Okamura and S. Matsuki. Phys. Rev. C 35 (1987)

	Recent calc. [5]	[6] with SMS = 0
F ₅₈₃ (GHz/fm²)	- 3.10	- 6.71(0.17)

Outlook: redo the King plot for 583 nm transition with calculated F_{583}

Spectral linewidths broadening mechanisms

PACULTÉ DES SCIENCES D'ORSAY

What are the factors causing the different linewidths?

- injection-locked Ti:sa in gas jet ~ 200 MHz
- dual-etalon Ti:sa in gas cell ~ 3GHz at 100 mbar

Power broadening of spectral linewidths

Power saturation test

CNrs

FACULTÉ

D'ORSAY

UNIVERSITE PARIS-SACLAY

DES SCIENCES

W

Université de Paris

What are the factors causing the different linewidths?

- injection-locked Ti:sa in gas jet ~ 200 MHz
- dual-etalon Ti:sa in gas cell ~ 3GHz at 100 mbar ٠

 λ_1 easily saturated at mW. λ_2 the AI transition, far from saturation.

Collisional broadening and shift of spectral lines

₅s 👪 Université de Paris

 Frequency - $\nu_{0, 166Er}$ (MHz)

 Excitation step (nm)
 Broadening coef. (MHz/mbar)
 Shift coef. (MHz/mbar)

 408.8
 4.53(0.66)
 -0.13(0.29)

 400.8
 19.32(1.00)
 -1.95(0.32)

 415.2 [1]
 11(1)
 -4(1)

[1] A. Ajayakumar et al.Nuclear Inst. and Methods in Physics Research, B 539 (2023)

Collisional broadening and shift for ^{166,168,170}Er at different pressures

Hyperfine values for 408.8 nm FES

• FACULTÉ UNIVERSITE DES SCIENCES PARIS-SACLAY D'ORSAY

Hyperfine structure constants A and B for different FES of ¹⁶⁷Er

CNrs

Atomic states	Excitation step(nm)	Method	A(MHz)	B(MHz)
4f ¹¹ (⁴ I)5d6s ² , J=6	408.8	gas jet	-124.0(6.0)	209.0 (7.8)
4f ¹² (³ H ₅)6s6p, J=5	415.2	gas jet [1,2]	-147.1(7)	-1936(24)
g.s.	-	ref [3]	-121.8	-4563

[1] A. Ajayakumar et al.Nuclear Inst. and Methods in Physics Research, B 539 (2023)
[2] J. Romans et al. Nucl. Instrum. Meth. B 536 (2023)
[3] W.J. Childs et al., Phys. Rev. A 28 (1983)

Conclusion and outlook

CORS

Conclusion:

• The IS and HFS analysis of the 408.8 nm transition is finished. We found good agreement between gas-cell and gas-jet data. The transtion has large IS so is a good one for studying $\delta \langle r^2 \rangle^{A',A}$, but it is challenging to get an accurate field shift factor from it.

Outlook:

- Try to include the theoretical calculation with experimental data to better constrain the F and M for the 408.8 nm transition.
- Next Step for S³-LEB: more NB spectroscopy need to be done once the Matisse cavity is ready for the transitions that are not achievable with the current Ti:sa cavity.

The S3-LEB collaboration

FACULTÉ

DES SCIENCES

Thank you for your attention!

GANIL:

Anjali Ajayakumar; Dieter Ackermann; Lucia Caceres; Samuel Damoy; Pierre Delahaye; Patrice Gangnant; Nathalie Lecesne; Thierry Lefrou; Renan Leroy; Franck Lutton; Alejandro Ortiz; Benoit Osmond; Julien Piot; Blaise-Maël Retailleau; Hervé Savajols; Gilles Sénécal

LPC:

Frédéric Boumard; Jean-François Cam; Philippe Desrues; Xavier Fléchard; Julien Lory; Yvan Merrer; Christophe Vandamme

IJCLab:

Wenling Dong; Patricia Duchesne; Serge Franchoo; Vladimir Manea; Olivier Pochon

KU Leuven:

Arno Claessens; Rafael Ferrer; Mark Huyse; Fedor Ivandikov; Sandro Kraemer; Yuri Kudriavtsev; Jekabs Romans; Simon Sels; Paul Van den Bergh; Piet Van Duppen; Matthias Verlinde; Elise Verstraelen

JGU: Sebastian Raeder; Dominik Studer; Klaus Wendt

<u>JYU:</u> Ruben de Groote; Iain David Moore; Michael Reponen; Juha Uusitalo

IPHC:

Emil Traykov

IRFU:

Martial Authier; Olivier Cloue; Antoine Drouard; Thomas Goigoux; Emmanuel Rey-Herme; Damien Thisse; Marine Vandebrouck

and the RESIST network in ENSAR2

5/29/2024

408.8nm

D'ORSAY

400.8nm IS studies

A'	Isotope sh	Isotope shifts (MHz) $\Delta \nu_{\rm WA}^{A',170}$			
	400.8 nm	400.8 nm			
	gas cell	gas jet	[4]		
164	2386(118)	2517(39)	2530(22)		
166	1748(44)	1720(43)	1681(14)		
167	1415(38)	1395(29)	1384(15)		
168	875(46)	855(13)	841(20)		

UNIVERSITE PARIS-SACLAY

CNrs

FACULTÉ DES SCIENCES

D'ORSAY

4

Université de Paris

[4] A. Frisch et al., Phys. Rev. A 88 (2013)

¹⁶⁴Er FWHM:

¹⁶⁶Er FWHM:

¹⁶⁷Er FWHM:

2334(59) MHz

¹⁶⁸Er FWHM:

¹⁷⁰Er FWHM:

5000

2345(49) MHz

2447(34) MHz

2373(36) MHz

2334(59) MHz

408.8nm King plot analysis

DES SCIENCES université

CNrs

des 2 Infinis

IS = field shift + mass shift Two types King plots Atomic factors F_i and M_i Large F_i values \rightarrow high sensitivity to $\Lambda^{A',A} \approx \delta \langle r^2 \rangle^{A',A}$.

Limitations:

- Type I: too large uncertainties.
- Type II: only reference for Er is the 583 nm transition[1] assuming $M_{iSMS} = 0.$

Type I using muonic X-ray $\lambda^{A',170}$ data: $(\Delta \nu_i^{A',A})_{\mathrm{mod}} = F_i (\Lambda^{A',A})_{\mathrm{mod}} + \mu M_i$

$$M_i = M_{i,NMS} + M_{i,SMS}$$

• $M_{i,NMS} = \frac{\nu_i}{\nu_i}$

$$M_{i,NMS} = \frac{V_1}{1836.15}$$

 $M_{i.SMS} = (0. \pm 0.5) M_{i.NMS}$ • for *ns²-nsnp* transitions

Type II using 583 nm reference: $(\Delta
u_i^{A',A})_{\mathrm{mod}} = rac{F_i}{F_{ref}} (\Delta
u_{ref}^{A',A})_{\mathrm{mod}} + M_i - rac{F_i}{F_{ref}} M_{ref}$ $\times 10^{7}$ Modified $\Delta \nu_{408.8}^{A',A}$ (MHz*u) 3. 408.8 nm gas jet [167,168] [168,170] [164,166] $\chi^2 = 0.39$ [166,167] $F = 10524(260) MHz/fm^2$ M = -6874(>404) GHz*u-2.00 - 1.75 - 1.50 - 1.25 - 1.00-0.75 -0.50 $\times 10^{7}$ Modified $\Delta v_{583}^{A',A}$ (MHz*u)

$$\delta \nu_{i, \text{ SMS}}^{A', A} = (0. \pm 0.5) \delta \nu_{i, \text{ NMS}}^{A', A}$$
for $ns^2 - nsnp$ transitions

```
M_{iSMS} = (0. \pm 0.5) M_{iNMS}
 for ns<sup>2</sup>-nsnp transitions
```

[1] H. Okamura, S. Matsuki, Phys. Rev. C 35 (1987)