

Status of FRIENDS3 project

Elodie Morin

May 29th, 2024

Developments for S³-LEB gas cell improvement

2 Experimental tests

Fast Radioactive Ion Extraction and Neutralization Device for S^3

- Improvement on neutralization efficiency
- Improvement on extraction time

Current gas cell extraction time : 500-600 ms

Our tools :

- Simulations (COMSOL and SIMION)
- Design of a test bench

Fast Radioactive Ion Extraction and Neutralization Device for S³

- Improvement on neutralization efficiency
- Improvement on extraction time

Phase 1

Manufacturing

Fast Radioactive Ion Extraction and Neutralization Device for S³

- Improvement on neutralization efficiency
- Improvement on extraction time -> Electrical Gas Cell

Phase 2

S. Raeder et al., NIM B 463, 272-276 (2020)

ISOLFRANCE 2024

Test with 1 MHz radiofrequency in all RFQs

- Transfert mode :
 - Transmission up to : 83 % at 1 MHz
 - Main losses in the ion guide area (reflections at entrance, conductance at exit)

- Buncher mode :
 - Transmission about : 31 % at 1 MHz
 - Time resolving power : $t/2\Delta t(1 MHz) = 24$

- Mass filter mode :
 - Ion guide :
 - * 14 % transmission at 1 MHz with a = 0.23,
 - $m/\Delta m(1 \text{ MHz}) = 31$

- mRFQ :
 - * 5 % transmission at 1 MHz with a = 0.23, $m/\Delta m(1 \text{ MHz}) = 37$

Developments for S³-LEB gas cell improvement

2 Experimental tests

Source 1 (ions)

lon production

Ta foil (with or without Cs deposit)

Alkali pellet

Discharge

Max current obtained : about 8 pA

 ${\sf Max} \ {\sf current} \ {\sf obtained} :$

• 0.8 pA in source 1 position

Max current obtained : about 30 pA, needle at 20-30 V

ISOLFRANCE 2024

- Beta source : no additionnal electromagnetic field
 - No major impact on ion current measured on the end FC
 - Measurement of electron current : only background drift observed

Effect not visible or not existing !

Cs pellet as ion source, $P_{Ar} = 100$ mbar

Ion Current with/without beta source

- Beta source : no additionnal electromagnetic field
 - No major impact on ion current measured on the end FC
 - Measurement of electron current : only background drift observed

Effect not visible or not existing !

Perspective : Bring source closer to interaction point

- W filament
 - No major impact of filament potential on ion beam
 - W filament ions captured with bias

- W filament
 - No major impact of filament potential on ion beam
 - W filament ions captured with bias

- Test bench developed and manufactured, soon constructed
- Neutralization tests performed with W filament electrons, soon with a beta source close to interaction point

By the end of the year

- Moving to GANIL, first tests with lasers
- Manufacturing of the electrical gas cell

FRIENDS3 team @ IJCLab

Wenling Dong, SSerge Franchoo, Thierry Hourat, David Lunney, Vladimir Manea, Enrique Minaya Ramirez, and Samuel Roset

S³-LEB team

JETRIS (HIM, JGU Mainz, GSI)

Thank you for your attention !

Backup

Discharge ion source characterization

Test with 500 kHz radiofrequency in all RFQs

- Transfert mode :
 - Transmission up to : 41 % at 500 kHz
 - Main losses in the ion guide area (reflections at entrance, conductance at exit)

- Buncher mode :
 - Transmission about : 11-15 % at 500 kHz
 - Time resolving power : $t/2\Delta t(500 \text{ kHz}) = 12$

- Mass filter mode :
 - Ion guide :
 - * 6 % transmission at 500 kHz with a = 0.23,
 - $m/\Delta m(500 \text{ kHz}) = 25$
 - mRFQ :
 - * 4 % transmission at 500 kHz with a = 0.22, $m/\Delta m(500 \text{ kHz}) = 16$

• 500 kHz (runs with 1000 ions)

lon guide a = 0.23, resolving power = 25 mRFQ a = 0.22, resolving power = 16

Buncher 5ms trapping time, resolving power = 12

• 1 MHz (runs with 1000 ions)

Mass resolution

Ion guide a = 0.23, resolving power = 31

mRFQ a = 0.23, resolving power = 37

Buncher 5ms trapping time, resolving power = 24

- 1 MHz : up to 83 % transmission
 - After bRFQ : > 97 %
 - After mRFQ : 97 %
 - After ion guide : 88 %
 - After detection area conductance : 85 %

- $\bullet~500~kHz$: up to 41 % transmission
 - After bRFQ : 75 %
 - After mRFQ : 55 %
 - $\bullet\,$ After ion uide 47 $\%\,$
 - After detection area conductance : 44 %