

SPIRAL1 radioactive ion production

P. Jardin, V. Bosquet, P. Chauveau, M. Dubois, S. Damoy, P. Delahaye, G. Frémont, R. Frigot, S. Hormigos, M. Lalande, E. Levillain, C. Michel, F. Pérocheau, A. Ribet, J-C. Thomas. *GANIL, Grand Accélérateur National d'Ions Lourds, Bvd H. Becquerel, BP55027 14076 Caen cedex5, France*

M. MacCormick, J. Guillot, B. Roussière, *IJCLab, Institut Joliot Curie Laboratory, 15 Rue Georges Clémenceau, 91400 Orsay, France*

SPIRAL1 Installation

Objective

- To deliver low energy radioactive ion beams for DESIR
- To deliver post-accelerated ion beam intensities from 1E+3 pps to 1E+4 pps

Transport, charge breeding and post-acceleration efficiency (from the TISS exit to the post-accelerator exit) : ~1 to 2 %

→ Minimum intensity at the exit of the TISS : 1E+5 to 1E+6 pps

Purity of the beams : depends on

- The production reaction
- The contaminants present in the TISS
- The mass separator and post-accelerator

Primary ion beam and target combinations at SPIRAL1

Significant flexibility But Limited to primary beam energies lower than 95 MeV/A

Regions of the nuclide chart are presently accessible with SPIRAL1

GCS-2024-018

4

P. Jardin, GDR Strasbourg 27-29 mai 2024

And after in-target production...

Are required

- An efficient diffusion of the atoms out of the target materiel. → Need of experimental data about diffusion at high temperature
- An efficient effusion to transport the atoms up to the ion source. → Need of experimental data about sticking at high temperature
- An efficient atom-to-ion transformation

	ECR	FEBIAD	Surf. Ion	Laser							
Elements	Gas	All except refractories	Alkali	All except noble gases and refractories							
Efficiency	Up to 100%	Up to 50%	Up to 100%	op to 30%							
Selectivity	Yes	no	yes	yes							

Not available at SPIRAL1

Graphite target + ECR ion source (NanoGan)

Objective: multicharged RIBs from gaseous elements (mainly noble gases).

Designed and optimized from 1990 to 2004 at GANIL

- Graphite target Under regular operation since 2001 (~50 TISSs). Technical configuration fixed Production of RIBs from He, Ne, Ar, Kr and O Selectivity insured by the ionisation process (electron impact in a cold chamber) Heating resistor **Original concept** (+ some years of optimisation) ⁶⁻⁸He⁺ version Several attempts to copy \rightarrow aborted ECR ion source Sufficient intensities and charge states for efficient post-acceleration Primary **Possible improvements** beam **RF** injection Transfert zone
- Target design for Xe isotopes
- Improvement of the performances for the short-lived isotopes by improving the homogeneity of the target temperature

6

Graphite target + FEBIAD ion source

Objective: singly-charged RIBs from non refractory elements

Designed in the seventies (R. Kirchner)

- Several slight evolutions since its first design.
- Almost no selectivity due to the ionisation process (electron impact in a hot chamber)
- Efficiency strongly depends on the mass and on the chemistry

Last significant upgrade performed at GANIL in 2021-2022

- Thermal configuration modified
- ➔ Ar ionisation efficiency of 20 to 25% for more than 15 days without failure

Next changes

- Thermal configuration of the target to improve its temperature homogeneity (under study)
- Use of another target material

UNIVERSITE CAEN

Graphite target + FEBIAD ion source

Recent results

- 10 tests/experiments with radioactive beams
- Laste primary beams send on the graphite target : ⁴⁸Ca (2021), ⁸⁴Kr (2022) and ⁵⁰Cr (2023)
- 2 post accelerated beams : ^{38m}K (2019), ⁴⁷K (2021)
- More than 90 radioactive isotopes/isomers seen, including around 50 at post-accelerable intensities (>5^E+5 pps).

Last test (⁵⁰Cr primary beam)

 ⁴⁸Cr (T_{1/2}=21 h) rate ok (1.2^E+4 pps/W) but very slow release (46 min) at low beam power (30 W)

GCS-2024-018

Post-acceleral (>5E+5 pps)	ble beams	Mass	lsotope(s)	T1/2	Expected rate with the best primary beam			Mass	lsotope(s)	T1/2	Expected rate with the best primary beam
(Year: 2021	47	47K	17,5	2,7E+08			25	35Ar	1,7756	2,3E+08
ource spiral-2-	Target Ion Source n°53		45Ar	21.48	5.7E+06			35	H34mCl	1919.4	2.9E+07
	Target : Graphite	45	45K	1038	4.9E+08				34Ar	0.8438	1.1E+07
	Source : FEBIAD	43	43Cl	3,3	6,8E+04			34	34Cl	1,5266	3,6E+07
	Primary beam		43Ar	322,2	3,9E+07				34mCl	1919,4	1,2E+08
	48Ca 60MeV/A		42K	44496	6,2E+08			22	33Ar	0,173	1,5E+05
	Power : 200W	42	H41Cl	38,4	3,5E+05			3.*	۲CI	2,511	3,4E+06
	Maximum power		42Cl	6,8	3,2E+05			17	з2Ar	0,098	1,7E+03
	available : 700W	37	375	303	1,4E+05		Year: 202		32CI	0,298	1,3E+05
<u> </u>		80	80Rb	34	7,2E+07		0.95	31 30	31Cl	0,19	1,2E+03
		79	79mKr	50	3,0E+07				C190	26,91	2,9E+03
			79Kr	126144	3,5E+07		T		30AI	3,62	1,9E+04
			79Rb	1374	1,1E+07	J	Graphite Grace : FEBIAD	29	29AI	394	7,1E+05
C S			79mBr	4,85	8,1E+06	~			29Mg	1,3	4,3E+04
ohite target + FEBIAC ww.ganil-spiral2.eu/scientist wailable-beams/			78mRb	344,4	1,9E+06	\mathbb{O}		28	28AI	134,7	9,5E+06
		/8	78Rb	1059,6	3,0⊦	_	Primary beam	27	27Mg	567,5	1,3E+06
			78Br	38/	2		Power : 850W	26	26Na	1,07128	1,5E+06
		77	77K0	220,8	C1 ¹⁰				2011AI	0,340	1,3E+05 E 7E+04
			77mBr	42/	/ 0E+08		Maximum nower	25	25Na	7,103	3,7L+04
	Year: 2022		77Br	* 2C	2,1E+08		available : 850W		25Ne	0,602	5,9E+04
		1	77	,36	1,8E+04				24Ne	202,8	3,8E+06
				36,5	1,8E+04			24	24Na	53989,2	9,1E+08
	Target Ion Source n°55	76	76	53280	1,9E+08			24	24mNa	0,0202	2,8E+06
	Target : Graphite	/0	76Br	58320	7,1E+08				24Al	2,053	1,4E+03
	Source : FEBIAD		76mBr	1,31	2,6E+07			23	23Ne	37,25	1,6E+07
			75Kr	276	7,8E+05			21	23Mg	11,3046	8,8E+07
	Primary beam	75	75Br	5802	6,7E+08				21Na	22,49	1,0E+08
	84Kr 67MeV/A		75Ga	126	2,8E+06				1H20F	11	2,0E+05
	Power: 10W		71Se	284,4	5,2E+05			20	20Na	0,4479	1,3E+07
		71	/1As	235080	8,2E+07			8	8Li	0,84	1,9E+06
	Maximum power	, 1	71Zn	147	6,6E+05		Year: 2023	50	50mMn*	105	3,8E+05
	available : 500W		71mZn	14256	5,3E+06		Target Ion Source n°55	48	48Cr*	77616	5,9E+06
Gr a https://v facilities			69As	912	2,3E+06		Target : Graphite				
		60	69Ge	140580	1,4E+08		Source : FEBIAD				
		09	69mZn	49521,6	2,3E+07		Primary beam				
			69Cu	171	1,1E+06		50Cr 72MeV/A				
		68	68mCu	225	1,5E+06		Power : 20W				
			68Ga	4062,6	3,0E+08		Maximum power				
		67	67Ge	1134	8,0E+05		available : 500W	ļ			
			67Ga	281811	2,2E+08						9
		65	65Ga	5Ga 912	4,1E+07						
			65Ni	9061,88	2,8E+05						

Graphite target + surface ion source (MonoNaKe TISS)

Objective: RIB from low first ionization potential elements with a selective ionization.

Designed in 2006 (C. Eléon, PhD 2007, GANIL)

- Tested on-line on SIRa (2006) for Li⁺, Na⁺, K⁺ production.
- Pending since 2007.

Tested and qualified from 2022 to 2024 with ⁷Li (stable)

• Encouraging off-line results

On-line production test of ⁸⁻⁹Li+ in April 2024

- Rate of ~2E+7 pps of ⁸Li⁺ obtained, sufficient for a post-acceleration
- Rate of ~1E+5 pps of ⁹Li⁺
- Rates seems to be improvable by a factor of ~10 (high sensitivity of the production rate to the target temperature)

Results explained by the electric field in the ioniser

- → Less dependant on the first ionisation potential of the atoms
- → Atoms with first ionisation potential up to 6 eV could be accessible: to be tested.

Graphite target + surface ion source (MonoNaKe TISS)

Expansion of the production to low first ionization potential elements.

H 13,6		First ionization energies												
Li 5,39	Be 9,32	Accessible elements ?											B 8,3	
Na 5,14	<mark>Mg</mark> 7,65												AI 5,99	?
К 4,34	Ca 6,11		Sc 6,56	Ti 6,83	V 6,75	Cr 6,77	Mn 7,43	Fe 7,9	Co 7,88	Ni 7,64	Cu 7,73	Zn 9,39	Ga 6	
Rb 4,18	<mark>Sr</mark> 5,69		Y 6,22	Zr 6,63	Nb 6,76	Mo 7,09	Тс 7,28	Ru 7,36	Rh 7,46	Pd 8,34	Ag 7,58	Cd 8,99	in 5,79	?
Cs 3,89	Ba 5,21	*	Lu 5,43	Hf 6,83	Ta 7,55	W 7,86	Re 7,83	Os 8,44	lr 8,97	Pt 8,96	Au 9,23	Hg 10,44	TI 6,11	
Fr 4,07	Ra 5,28	**	Lr 4,9	Rf 6	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	
		Ļ												
	?	*	La 5,58	Се 5,54	Pr 5,47	Nd 5,53	Pm 5,58	Sm 5,64	Eu 5,67	Gd 6,15	Tb 5,86	Dy 5,94	Ho 6,02	
	•	**	Ac 5,17	Th 6,31	Pa 5,89	U 6,19	Np 6,27	Pu 6,03	Am 5,97	Cm 5,99	Bk 6,2	Cf 6,28	Es 6,42	

Ni target + SIS or electron impact

Objective: Neutron deficient short-lived ions from Rb and Sn

Initially designed in 2015 (V. Kuchi, PhD 2015-2018, GANIL)

TULIP configuration for Rb⁺

TULIP configuration for Sn⁺

TULIP project (2019-2025)

Ni target + Surface Ionisation Source for ⁷⁴⁻⁷⁸Rb⁺ production, July 2022

⁷⁴Rb not released due to a too long response time at 1200°C. Need to increase the cavity temperature

- Made possible by the all-carbon cavity
- Made possible (without risk for the target) by a rotating target (under construction)

Off-line test scheduled for June 2024

- Ni target + FEBIAD Ion Source, off-line test scheduled for July 2024
- Ni target + FEBIAD Ion Source + rotating target, off-line test scheduled for July 2024
- Ni target + FEBIAD Ion Source + rotating target, ON-line test expected for Spring 2025 to produce isotopes close to ¹⁰⁰Sn
 TULIP chamber

How to extend the production to other elements?

- Change the primary beam-target couple
- => Verify the temperature of the target
- => Estimate the production
- => Obtain the authorisation to use the target material

Batch Mode Ion source at FRIB

Beams for experiments already delivered: ^{7,10}Be, ²⁶Al, ³²Si, ⁷³As – delivered for experiments ²²⁹Th, ⁴⁴Ti and other isotopes under development

Batch Mode Ion source at GANIL/SPIRAL1?

Conclusions

- Three innovative and performing Target Ion Source Systems are today available at SPIRAL1
- With them, SPIRAL1 can compete in regions hardly accessible to other installations
- ~50 Radioactive Ion Beams can be post-accelerated with a final ion intensity higher than 1E+4 pps
- Other radioactive beams could be delivered at short term (6 months-2 years) if demanded (see <u>https://u.ganil-spiral2.eu/chartbeams/</u>)

Thank you for your attention