Looking for new physics through the exclusive $b \rightarrow S \nu \nu$ modes

HEP Seminar @ IJCLab

Salvador Rosauro-Alcaraz, 19/03/2024

Outline

- Introduction
- $B \rightarrow K^{(*)} \nu \nu$ in the Standard Model
- Effective theory description
- Sources of uncertainty
- Belle-II results
- Implications for BSM physics
- LEFT
- SMEFT
- Light new physics
- Summary and outlook

Introduction

Flavor Physics

$$
\mathscr{L}_{\text {Yukawa }}=-\bar{Q} Y_{d} H d_{R}-\bar{Q} Y_{u} \tilde{H} u_{R}-\bar{L} Y_{\ell} H e_{R}+\square+h . c
$$

Most of the free parameters of the SM arise from $\mathscr{L}_{\text {Yukawa }}$ and need to be extracted from experiment

Introduction

Flavor Physics
Origin of neutrino masses?
$\mathscr{L}_{\text {Yukawa }}=-\bar{Q} Y_{d} H d_{R}-\bar{Q} Y_{u} \tilde{H} u_{R}-\bar{L} Y_{\ell} H e_{R}+\bar{L} Y_{\nu} \tilde{H} N_{R}+\frac{1}{2} \bar{N}_{R}^{c} M N_{R}+h . c$.
Most of the free parameters of the SM arise from
$\mathscr{L}_{\text {Yukawa }}$ and need to be extracted from experiment

Introduction

Flavor Physics

Origin of neutrino masses?

$$
\mathscr{L}_{\text {Yukawa }}=-\bar{Q} Y_{d} H d_{R}-\bar{Q} Y_{u} \tilde{H} u_{R}-\bar{L} Y_{\ell} H e_{R}+\bar{L} Y_{\nu} \tilde{H} N_{R}+\frac{1}{2} \bar{N}_{R}^{c} M N_{R}+h . c .
$$

Most of the free parameters of the SM arise from $\mathscr{L}_{\text {Yukawa }}$ and need to be extracted from experiment

Introduction

Flavor Physics

Origin of neutrino masses?

$$
\mathscr{L}_{\text {Yukawa }}=-\bar{Q} Y_{d} H d_{R}-\bar{Q} Y_{u} \tilde{H} u_{R}-\bar{L} Y_{\ell} H e_{R}+\bar{L} Y_{\nu} \tilde{H} N_{R}+\frac{1}{2} \bar{N}_{R}^{c} M N_{R}+h . c .
$$

Most of the free parameters of the SM arise from $\mathscr{L}_{\text {Yukawa }}$ and need to be extracted from experiment

Introduction

Indirect searches for New Physics

We can look for rare/forbidden processes in the SM which would be sensitive to BSM physics effects

Introduction

Indirect searches for New Physics

We can look for rare/forbidden processes in the SM which would be sensitive to BSM physics effects

Flavour Changing Neutral Current (FCNC) processes are good probes of New Physics as they are loop and GIM suppressed in the SM

Introduction

Indirect searches for New Physics

We can look for rare/forbidden processes in the SM which would be sensitive to BSM physics effects

Flavour Changing Neutral Current (FCNC) processes are good probes of New Physics as they are loop and GIM suppressed in the SM

Introduction

Indirect searches for New Physics

We can look for rare/forbidden processes in the SM which would be sensitive to BSM physics effects

Flavour Changing Neutral Current (FCNC) processes are good probes of New Physics as they are loop and GIM suppressed in the SM

$$
\text { Rare } B \text {-meson decays }
$$

Advantage of $B \rightarrow K^{(*)} \nu \nu$ over the channel with charged leptons
Hadronic uncertainties might hinder their precise determination:
$b \rightarrow s \nu \nu$ is theoretically cleaner than $b \rightarrow s \mu \mu$, not affected by $c \bar{c}$-loops

$B \rightarrow K^{(*)} \nu \nu$ in the Standard Model

$$
\mathcal{O}_{\exp }=\mathcal{O}_{\mathrm{SM}}\left(1+\delta_{\mathrm{NP}}\right)
$$

Effective lagrangian

$b \rightarrow s \nu \nu$

Effective description in the SM

See e.g. A. Buras et al., 1409.4557

$$
\mathscr{L}^{b \rightarrow s \nu \nu}=\frac{4 G_{F}}{\sqrt{2}} \lambda_{t} \sum_{a} C_{a} \mathcal{O}_{a}+h . c .
$$

Effective lagrangian

$b \rightarrow s \nu \nu$

Effective description in the SM

See e.g. A. Buras etal., 1409.4557
$\mathscr{L}^{b \rightarrow s \nu L}=\frac{4 G_{F}}{\sqrt{2}} \lambda_{t} \sum_{a} C_{a}^{L_{j} \nu_{j}}=\frac{e^{2}}{(4 \pi)^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\nu}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{j}\right)$

Effective lagrangian

$b \rightarrow s \nu \nu$

Effective description in the SM

Effective lagrangian

$b \rightarrow s \nu \nu$

Effective description in the SM

See e.g. A. Buras et al., 1409.4557

$$
\mathcal{O}_{L}^{\nu_{L} \nu_{j}}=\frac{e^{2}}{(4 \pi)^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\nu}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{j}\right)
$$

$$
C_{L}^{S M}=-6.32(7) \quad \begin{aligned}
& \text { NLO QCD \& 2-loop } \\
& \text { EW corrections }
\end{aligned}
$$

Flavor diagonal and universal J. Brod, M. Gorbahn \& E. Stamou, arXiv:1009.0947
$\mathscr{L}^{b \rightarrow s \nu \nu}=\frac{4 G_{F}}{\sqrt{2}} \lambda_{t} \sum_{a}\left(C_{a} \mathscr{b}_{a}+h . c\right.$.

Effective lagrangian

$b \rightarrow s \nu \nu$

Effective description in the SM

See e.g. A. Buras et al., 1409.4557

$$
\mathcal{O}_{L}^{\nu_{L} \nu_{j}}=\frac{e^{2}}{(4 \pi)^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\nu}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{j}\right)
$$

$$
C_{L}^{S M}=-6.32(7) \quad \begin{aligned}
& \text { NLO QCD \& 2-loop } \\
& \text { EW corrections }
\end{aligned}
$$ EW corrections

$$
\mathscr{L}^{b \rightarrow s \nu \nu}=\frac{4 G_{F}}{\sqrt{2}} \lambda_{t} \sum_{a} C_{a} \mathscr{P}_{a}+h . c . \quad \begin{array}{ll}
\text { Flavor diagonal } & \text { and universal }
\end{array}
$$

Sources of uncertainty CKM matrix element determination

$$
\mathscr{L}^{b \rightarrow s \nu \nu}=\frac{4 G_{F}}{\sqrt{2}} \lambda_{t} \sum_{a} C_{a} \mathcal{O}_{a}+h . c .
$$

Sources of uncertainty

 CKM matrix element determination$$
\begin{gathered}
\left.\mathscr{L}^{b \rightarrow s \nu \nu}=\frac{4 G_{F}}{\sqrt{2}} \widehat{\lambda}_{t}\right) \sum_{a} C_{a} \mathcal{O}_{a}+h . c . \\
\lambda_{t} \equiv V_{t b} V_{t s}^{*}
\end{gathered}
$$

Sources of uncertainty CKM matrix element determination

$$
\begin{gathered}
\left.\mathscr{L}^{b \rightarrow s \nu \nu}=\frac{4 G_{F}}{\sqrt{2}} \widehat{\lambda}_{t}\right) \sum_{a} C_{a} \mathcal{O}_{a}+h . c . \\
\lambda_{t} \equiv V_{t b} V_{t s}^{*}
\end{gathered}
$$

CKM unitarity $\left|\lambda_{t}\right| \sim\left|V_{c b}\right|\left(1+\mathcal{O}\left(\lambda^{2}\right)\right)$

Sources of uncertainty CKM matrix element determination

$$
\begin{gathered}
\left.\mathscr{L}^{b \rightarrow s \nu \nu}=\frac{4 G_{F}}{\sqrt{2}} \widehat{\lambda}_{t}\right) \sum_{a} C_{a} \mathcal{O}_{a}+h . c . \\
\lambda_{t} \equiv V_{t b} V_{t s}^{*}
\end{gathered}
$$

$$
\begin{aligned}
& \text { CKM unitarity }\left|\lambda_{t}\right| \sim\left|V_{c b}\right|\left(1+\mathcal{O}\left(\lambda^{2}\right)\right) \\
& \text { Inclusive vs exclusive }
\end{aligned}
$$

Sources of uncertainty CKM matrix element determination

$$
\begin{gathered}
\left.\mathscr{L}^{b \rightarrow s \nu \nu}=\frac{4 G_{F}}{\sqrt{2}} \widehat{\lambda}_{t}\right) \sum_{a} C_{a} \widehat{O}_{a}+h . c . \\
\lambda_{t} \equiv V_{t b} V_{t s}^{*}
\end{gathered}
$$

CKM unitarity $\left|\lambda_{t}\right| \sim\left|V_{c b}\right|\left(1+\mathcal{O}\left(\lambda^{2}\right)\right)$
Inclusive vs exclusive

Sources of uncertainty

Form factor determination

$$
\begin{gathered}
\mathscr{L}^{b \rightarrow s \nu \nu}=\frac{4 G_{F}}{\sqrt{2}} \lambda_{t} \sum_{a} C_{a}\left(\varrho_{G}\right)+h . c . \\
\mathcal{O}_{L}^{\nu_{i} \nu_{j}}=\frac{e^{2}}{(4 \pi)^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\nu}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{j}\right)
\end{gathered}
$$

CKM determination
CKM unitarity $\left|\lambda_{t}\right| \sim\left|V_{c b}\right|\left(1+\mathcal{O}\left(\lambda^{2}\right)\right)$

Sources of uncertainty

Form factor determination

CKM determination

$$
\begin{aligned}
& \left.\mathscr{L}^{b \rightarrow s \nu \nu}=\frac{4 G_{F}}{\sqrt{2}} \lambda_{t} \sum_{a} C_{a} \widehat{O}_{a}\right)+h . c . \\
& \mathcal{O}_{L}^{L_{i} \nu_{j}}=\frac{e^{2}}{(4 \pi)^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\nu}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{j}\right) \\
& \bar{B} \sim \cup{ }^{6} \text { Hadronic matrix element } \\
& \text { CKM unitarity }\left|\lambda_{t}\right| \sim\left|V_{c b}\right|\left(1+\mathcal{O}\left(\lambda^{2}\right)\right) \\
& \text { Inclusive vs exclusive? } \\
& \mathrm{S} \\
& -\left\langle K^{(*)}\right| \bar{s}_{L} \gamma^{\mu} b_{L}|B\rangle=\sum_{i} K_{i}^{\mu} \mathscr{F}_{i}\left(q^{2}\right)
\end{aligned}
$$

Sources of uncertainty

Form factor determination

CKM determination

$$
\left.\mathscr{L}^{b \rightarrow s \nu \nu}=\frac{4 G_{F}}{\sqrt{2}} \lambda_{t} \sum_{a} C_{a} \widehat{\vartheta}_{a}\right)+h . c
$$

$\frac{\text { CKM unitarity }\left|\lambda_{t}\right| \sim\left|V_{c b}\right|\left(1+\mathcal{O}\left(\lambda^{2}\right)\right)}{\text { Inclusive vs exclusive? }}$

$$
\mathcal{O}_{L}^{L_{i} \nu_{j}}=\frac{e^{2}}{(4 \pi)^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\nu}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{j}\right)
$$

$$
\bar{B} \cap \gg{ }^{6} \quad \text { Hadronic matrix element }
$$

Sources of uncertainty

Form factor determination

$$
\begin{gathered}
\mathscr{L}^{b \rightarrow s \nu \nu}=\frac{4 G_{F}}{\sqrt{2}} \lambda_{t} \sum_{a} C_{a} \mathcal{O}_{a}+h . c . \\
\mathcal{O}_{L}^{\nu_{i} \nu_{j}}=\frac{e^{2}}{(4 \pi)^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\nu}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{j}\right)
\end{gathered}
$$

CKM determination
CKM unitarity $\left|\lambda_{t}\right| \sim\left|V_{c b}\right|\left(1+\mathcal{O}\left(\lambda^{2}\right)\right)$
Inclusive vs exclusive?

Form factor determination

$$
\begin{aligned}
& \left\langle K^{(*)}\right| \bar{s}_{L} \gamma^{\mu} b_{L}|B\rangle=\sum_{i} K_{i}^{\mu} \mathscr{F}_{i}\left(q^{2}\right) \\
& \text { Form factors Lattice QCD, LCSR...) }
\end{aligned}
$$

Form factors

$B \rightarrow K \nu \bar{\nu}$

Lattice determinations of the form factors (FF)

$$
\langle\bar{K}(k)| \bar{s} \gamma^{\mu} b|\bar{B}(p)\rangle=\left[(p+k)^{\mu}-\frac{m_{B}^{2}-m_{K}^{2}}{q^{2}} q^{\mu}\right] f_{+}\left(q^{2}\right)+q^{\mu} \frac{m_{B}^{2}-m_{K}^{2}}{q^{2}} f_{0}\left(q^{2}\right)
$$

Form factors

$$
B \rightarrow K \nu \bar{\nu}
$$

Lattice determinations of the form factors (FF)

> Only FF entering
> $\mathscr{B}(B \rightarrow K \nu \bar{\nu})$

Form factors

$$
B \rightarrow K \nu \bar{\nu}
$$

Lattice determinations of the form factors (FF)

> Only FF entering
> $\mathscr{B}(B \rightarrow K \nu \bar{\nu})$

Form factors

$$
B \rightarrow K \nu \bar{\nu}
$$

> Only FF entering
> $\mathscr{B}(B \rightarrow K \nu \bar{\nu})$

Lattice determinations of the form factors (FF)

Final prediction

$$
\mathscr{B}\left(B^{ \pm} \rightarrow K^{ \pm} \nu \bar{\nu}\right)=(4.44 \pm 0.30) \times 10^{-6}
$$

O(7\%) error
*Only loop

Form factors

$B \rightarrow K^{*} \nu \bar{\nu}$

Several FF enter into the decay rate, determined through the combination of one LQCD result \& LCSR

$$
\begin{aligned}
& \left\langle\bar{K}^{*}(k)\right| \bar{s}_{L} \gamma^{\mu} b_{L}|\bar{B}(p)\rangle=\epsilon_{\mu \nu \rho \sigma} \varepsilon^{* \nu} p^{\rho} k^{\sigma} \frac{2 V\left(q^{2}\right)}{m_{B}+m_{K^{*}}}-i \varepsilon_{\mu}^{*}\left(m_{B}+m_{K^{*}}\right) A_{1}\left(q^{2}\right) \\
& +i(p+k)_{\mu}\left(\varepsilon^{*} \cdot q\right) \frac{A_{2}\left(q^{2}\right)}{m_{B}+m_{K^{*}}}+i q_{\mu}\left(\varepsilon^{*} \cdot q\right) \frac{2 m_{K^{*}}}{q^{2}}\left[A_{3}\left(q^{2}\right)-A_{0}\left(q^{2}\right)\right]
\end{aligned}
$$

Form factors

$$
B \rightarrow K^{*} \nu \bar{\nu}
$$

Several FF enter into the decay rate, determined through the combination of one LQCD result \& LCSR

$$
\begin{aligned}
& \left\langle\bar{K}^{*}(k)\right| \bar{s}_{L} \gamma^{\mu} b_{L}|\bar{B}(p)\rangle=\epsilon_{\mu \nu \rho \sigma} \varepsilon^{* \nu} p^{\rho} k^{\sigma} \frac{2 V\left(q^{2}\right)}{m_{B}+m_{K^{*}}}-i \varepsilon_{\mu}^{*}\left(m_{B}+m_{K^{*}}\right) A_{1}\left(q^{2}\right)
\end{aligned}
$$

Form factors

$$
B \rightarrow K^{*} \nu \bar{\nu}
$$

Several FF enter into the decay rate, determined through the combination of one LQCD result \& LCSR

$$
\left\langle\bar{K}^{*}(k)\right| \bar{s}_{L} \gamma^{\mu} b_{L}|\bar{B}(p)\rangle=\epsilon_{\mu \nu \rho \sigma} \varepsilon^{* \nu} p^{\rho} k^{\sigma} \frac{2 V\left(q^{2}\right)}{m_{B}+m_{K^{*}}}-i \varepsilon_{\mu}^{*}\left(m_{B}+m_{K^{*}}\right) A_{1}\left(q^{\text {A. Bharuccha }}{ }^{\text {R }}\right.
$$

$$
+k)_{\mu}\left(\varepsilon^{*} \cdot q\right) \frac{A_{2}\left(q^{2}\right)}{m_{B}+m_{K^{*}}}+i q_{\mu}\left(\varepsilon^{*} \cdot q\right) \frac{2 m_{K^{*}}}{q^{2}}\left[A_{3}\left(q^{2}\right)-A_{0}\left(q^{2}\right)\right]
$$

$$
\text { Relative error related to FF determination } \sim \mathcal{O}(15 \%)
$$

Final prediction

$$
\mathscr{B}\left(B^{ \pm} \rightarrow K^{ \pm *} \nu \bar{\nu}\right)=(9.8 \pm 1.4) \times 10^{-6}
$$

Summary

$B \rightarrow K^{(*)} \nu \bar{\nu}$ in the $\mathbf{S M}$
Two main sources of uncertainty

Form factor determination

$$
\begin{aligned}
& \left\langle K^{(*)}\right| \bar{s}_{L} \gamma^{\mu} b_{L}|B\rangle=\sum_{i} K_{i}^{\mu} \mathscr{F}_{i}\left(q^{2}\right) \\
& \text { Form factors (Lattice QCD, LCSR...) }
\end{aligned}
$$

CKM determination
CKM unitarity $\left|\lambda_{t}\right| \sim\left|V_{c b}\right|\left(1+\mathcal{O}\left(\lambda^{2}\right)\right)$
Inclusive vs exclusive?

Expected BR in the SM using exclusive $B \rightarrow D \ell \nu$ decays and available FF determinations as inputs

$$
\begin{gathered}
\left.\mathscr{B}\left(B^{ \pm} \rightarrow K^{ \pm} \nu \bar{\nu}\right)\right|_{\mathrm{SM}}=(4.44 \pm 0.30) \times 10^{-6} \\
\left.\mathscr{B}\left(B^{ \pm} \rightarrow K^{ \pm^{*}} \nu \bar{\nu}\right)\right|_{\mathrm{SM}}=(9.8 \pm 1.4) \times 10^{-6} \\
\hline
\end{gathered}
$$

Belle-II results

$$
\hat{\sigma}_{\mathrm{exp}}=\mathcal{O}_{\mathrm{SM}}\left(1+\delta_{\mathrm{NP}}\right)
$$

Belle-Il experiment

Belle-II (SuperKEKB) is an $e^{+} e^{-}$collider operating at $\sqrt{s} \simeq m_{\Upsilon(4 S)}$ BELLE-II Collaboration, arXiv:2311.14647

$$
e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B^{+} B^{-}
$$

Belle-Il experiment

Belle-II (SuperKEKB) is an $e^{+} e^{-}$collider operating at $\sqrt{s} \simeq m_{\Upsilon(4 S)}$
BELLE-II Collaboration, arXiv:2311.14647

Tagging methods	Hadronic	Inclusive
Efficiency	0.5%	8%
Backgrounds	Small	Large

Belle-Il experiment

Belle-II (SuperKEKB) is an $e^{+} e^{-}$collider operating at $\sqrt{s} \simeq m_{\Upsilon(4 S)}$
BELLE-II Collaboration, arXiv:2311.14647

Signal: $B^{+} \rightarrow K^{+} \nu \nu$

Tagging methods	Hadronic	Inclusive
Efficiency	0.5%	8%
Backgrounds	Small	Large

Belle-Il experiment

Belle-II (SuperKEKB) is an $e^{+} e^{-}$collider operating at $\sqrt{s} \simeq m_{\Upsilon(4 S)}$
BELLE-II Collaboration, arXiv:2311.14647

Belle-Il experiment

Belle-II (SuperKEKB) is an $e^{+} e^{-}$collider operating at $\sqrt{s} \simeq m_{\Upsilon(4 S)}$
BELLE-II Collaboration, arXiv:2311.14647

Belle-Il experiment

Belle-II (SuperKEKB) is an $e^{+} e^{-}$collider operating at $\sqrt{s} \simeq m_{\Upsilon(4 S)}$
BELLE-II Collaboration, arXiv:2311.14647

Implications of $B \rightarrow K \nu \bar{\nu}$ for BSM

- LEFT
- SMEFT
- Light new physics

$$
\mathcal{O}_{\mathrm{exp}}=\mathcal{O}_{\mathrm{SM}}\left(1+\delta_{\mathrm{NP}}\right)
$$

BSM contributions

Low-energy EFT with SM neutrinos

Including BSM contributions we can write (w/o N_{R})

BSM contributions

Low-energy EFT with SM neutrinos

Including BSM contributions we can write (w/o N_{R})

$$
\begin{aligned}
& \mathscr{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)=\left.\mathscr{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)\right|_{\mathrm{SM}}\left(1+\delta \mathscr{B}_{K^{(*)}}\right) \quad \text { All BSM }
\end{aligned}
$$

BSM contributions

Low-energy EFT with SM neutrinos

Including BSM contributions we can write (w/o N_{R})

$$
\mathcal{L} b \rightarrow S \nu \nu=\frac{\text { Q }}{\text { G }}
$$

$$
\begin{aligned}
& \mathscr{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)=\left.\mathscr{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)\right|_{\mathrm{SM}}\left(1+\delta \mathscr{B}_{K^{(*)}}\right) \\
& \delta \mathscr{B}_{\left.K^{*}\right)}= \sum_{i} \frac{2 \operatorname{Re}\left[C_{L}^{\mathrm{SM}}\left(\delta C_{L}^{L_{L} \nu_{i}}+\delta C_{R}^{L_{i} \nu_{i}}\right)\right]}{3\left|C_{L}^{\mathrm{SM}}\right|^{2}}
\end{aligned}
$$

$$
\begin{gathered}
\eta_{V}^{K}=0 \\
\eta_{V}^{K^{*}}=3.33 \pm 0.07
\end{gathered}
$$

$$
\left.+\sum_{i, j} \frac{\left|\delta C_{L}^{\nu_{L} \nu_{j}}+\delta C_{R}^{\nu_{L}^{\nu} \nu_{j}}\right|^{2}}{3\left|C_{L}^{S M}\right|^{2}}-\eta_{V}^{K^{(0)}}\right) \sum_{i, j} \frac{\operatorname{Re}\left[\delta C_{R}^{\nu_{R} \nu_{j}}\left(C_{L}^{S M} \delta_{i j}+\delta C_{L}^{\nu_{L} \nu_{\nu}}\right)\right]}{3\left|C_{L}^{S M}\right|^{2}}
$$

$B \rightarrow K^{(*)} \nu \bar{\nu}$ with heavy NP

Correlations between $B \rightarrow K \nu \bar{\nu}$ and $B \rightarrow K^{*} \nu \bar{\nu}$

$B \rightarrow K^{(*)} \nu \bar{\nu}$ with heavy NP

Correlations between $B \rightarrow K \nu \bar{\nu}$ and $B \rightarrow K^{*} \nu \bar{\nu}$

One can find a lower bound for the validity of the EFT
$\frac{\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)}{\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)_{\mathrm{SM}}} \geq \frac{\mathscr{B}(B \rightarrow K \nu \bar{\nu})}{\mathscr{B}(B \rightarrow K \nu \bar{\nu})_{\mathrm{SM}}}\left(1-\frac{\eta_{V}^{K^{*}}}{4}\right)$

Assuming $\delta C_{L(R)}^{L_{i} \nu_{j}}=\delta C_{L(R)} \delta_{i j}$

$B \rightarrow K^{(*)} \nu \bar{\nu}$ with heavy NP

Correlations between $B \rightarrow K \nu \bar{\nu}$ and $B \rightarrow K^{*} \nu \bar{\nu}$

One can find a lower bound for the validity of the EFT
$\frac{\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)}{\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)_{\mathrm{SM}}} \geq \frac{\mathscr{B}(B \rightarrow K \nu \bar{\nu})}{\mathscr{B}(B \rightarrow K \nu \bar{\nu})_{\mathrm{SM}}}\left(1-\frac{\eta_{V}^{K^{*}}}{4}\right)$

Belle bounds $\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)<2.7 \times 10^{-5}$, constraining a solution only in terms of δC_{L}

$B \rightarrow K^{(*)} \nu \bar{\nu}$ with heavy NP

Correlations between $B \rightarrow K \nu \bar{\nu}$ and $B \rightarrow K^{*} \nu \bar{\nu}$

One can find a lower bound for the validity of the EFT

$$
\frac{\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)}{\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)_{\mathrm{SM}}} \geq \frac{\mathscr{B}(B \rightarrow K \nu \bar{\nu})}{\mathscr{B}(B \rightarrow K \nu \bar{\nu})_{\mathrm{SM}}}\left(1-\frac{\eta_{V}^{K^{*}}}{4}\right)
$$

Belle bounds $\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)<2.7 \times 10^{-5}$, constraining a solution only in terms of δC_{L}

Look for the fraction of longitudinally polarized K^{*}, F_{L}

$$
\mathscr{R}_{F_{L}}=\frac{F_{L}}{F_{L}^{\mathrm{SM}}}
$$

Implications of $B \rightarrow K \nu \bar{\nu}$ for BSM

- LEFT
- SMEFT
- Light new physics

$$
\mathcal{O}_{\mathrm{exp}}=\widehat{\sigma}_{\mathrm{SM}}\left(1+\delta_{\mathrm{NP}}\right)
$$

$B \rightarrow K^{(*)} \nu \bar{\nu}$ in the SMEFT

Four fermion operators*

If the NP contribution is heavy enough, $\Lambda>v$, we can work in the SMEFT

$$
\begin{gathered}
\mathcal{L}_{\mathrm{SMEFT}}^{(6)} \supset \frac{1}{\Lambda^{2}}\left\{\left(\mathcal{C}_{l q}^{(1)}+\mathcal{C}_{l q}^{(3)}\right)_{i j}\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{e}_{L i} \gamma_{\mu} e_{L j}\right)+\left(\mathcal{C}_{l q}^{(1)}-\mathcal{C}_{l q}^{(3)}\right)_{i j}\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\nu}_{L i} \gamma_{\mu} \nu_{L j}\right)\right. \\
\left.+2 V_{c s}\left[\mathcal{C}_{l q}^{(3)}\right]_{i j}\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{e}_{L i} \gamma_{\mu} \nu_{L j}\right)+\left[\mathcal{C}_{l d}\right]_{i j}\left(\bar{s}_{R} \gamma^{\mu} b_{R}\right)\left[\left(\bar{\nu}_{L i} \gamma_{\mu} \nu_{L j}\right)+\left(\bar{e}_{L i} \gamma_{\mu} e_{L j}\right)\right]+\text { h.c. }\right\} \\
{\left[\begin{array}{c}
(1) \\
L Q
\end{array}\right]_{i j k l}=\left(\bar{L}_{i} \gamma^{\mu} L_{j}\right)\left(\bar{Q}_{k} \gamma_{\mu} Q_{l}\right) \quad\left[\begin{array}{c}
\mathcal{O}_{L Q}^{(3)} \\
L Q
\end{array}\right]_{i j k l}=\left(\bar{L}_{i} \gamma^{\mu} \tau^{I} L_{j}\right)\left(\bar{Q}_{k} \gamma_{\mu} \tau^{I} Q_{l}\right) \quad\left[\mathcal{O}_{L d}\right]_{i j k l}=\left(\bar{L}_{i} \gamma^{\mu} L_{j}\right)\left(\bar{d}_{k} \gamma_{\mu} d_{l}\right)}
\end{gathered}
$$

$B \rightarrow K^{(*)} \nu \bar{\nu}$ in the SMEFT

Four fermion operators

If the NP contribution is heavy enough, $\Lambda>v$, we can work in the SMEFT

$$
\begin{aligned}
& \mathcal{L}_{\text {SMEFT }}^{(6)} \supset \frac{1}{\Lambda^{2}}\left\{\left(\mathcal{C}_{l q}^{(1)}+\mathcal{C}_{l q}^{(3)}\right)_{i j}\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{e}_{L i} \gamma_{\mu} e_{L j}\right)+\left(\mathcal{C}_{l q}^{(1)}-\mathcal{C}_{l q}^{(3)}\right)_{i j}\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\nu}_{L i} \gamma_{\mu} \nu_{L j}\right)\right. \\
& \left.\quad+2 V_{c s}\left[\mathcal{C}_{l q}^{(3)}\right]_{i j}\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{e}_{L i} \gamma_{\mu} \nu_{L j}\right)+\left[\mathcal{C}_{l d}\right]_{i j}\left(\bar{s}_{R} \gamma^{\mu} b_{R}\right)\left[\left(\bar{\nu}_{L i} \gamma_{\mu} \nu_{L j}\right)+\left(\bar{e}_{L i} \gamma_{\mu} e_{L j}\right)\right]+\text { h.c. }\right\}
\end{aligned}
$$

Correlations between $b \rightarrow s \nu \nu, b \rightarrow s l_{\alpha}^{-} l_{\beta}^{+}$and $b \rightarrow c l_{\alpha} \nu$

$B \rightarrow K^{(*)} \nu \bar{\nu}$ in the SMEFT

Four fermion operators

If the NP contribution is heavy enough, $\Lambda>v$, we can work in the SMEFT

$$
\begin{aligned}
& \mathcal{L}_{\text {SMEFT }}^{(6)} \supset \frac{1}{\Lambda^{2}}\left\{\left(\mathcal{C}_{l q}^{(1)}+\mathcal{C}_{l q}^{(3)}\right)_{i j}\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{e}_{L i} \gamma_{\mu} e_{L j}\right)+\left(\mathcal{C}_{l q}^{(1)}-\mathcal{C}_{l q}^{(3)}\right)_{i j}\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\nu}_{L i} \gamma_{\mu} \nu_{L j}\right)\right. \\
& \left.\quad+2 V_{c s}\left[\mathcal{C}_{l q}^{(3)}\right]_{i j}\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{e}_{L i} \gamma_{\mu} \nu_{L j}\right)+\left[\mathcal{C}_{l d}\right]_{i j}\left(\bar{s}_{R} \gamma^{\mu} b_{R}\right)\left[\left(\bar{\nu}_{L i} \gamma_{\mu} \nu_{L j}\right)+\left(\bar{e}_{L i} \gamma_{\mu} e_{L j}\right)\right]+\text { h.c. }\right\}
\end{aligned}
$$

Correlations between $b \rightarrow s \nu \nu, b \rightarrow s l_{\alpha}^{-} l_{\beta}^{+}$and $b \rightarrow c l_{\alpha}^{\nu}$

Matching to the low-energy NP couplings

$$
\delta C_{L}^{\nu_{i} \nu_{j}}=\frac{\pi}{\alpha_{\mathrm{em}} \lambda_{t}} \frac{v^{2}}{\Lambda^{2}}\left\{\left[\mathcal{C}_{l q}^{(1)}\right]_{i j}-\left[\mathcal{C}_{l q}^{(3)}\right]_{i j}\right\} \quad \delta C_{R}^{\nu_{i} \nu_{j}}=\frac{\pi}{\alpha_{\mathrm{em}} \lambda_{t}} \frac{v^{2}}{\Lambda^{2}}\left[\mathcal{C}_{l d}\right]_{i j}
$$

$B \rightarrow K^{(*)} \nu \bar{\nu}$ in the SMEFT

Correlations between observables

If the NP contribution is heavy enough, $\Lambda>v$, we can work in the SMEFT

$$
\begin{aligned}
& \mathcal{L}_{\text {SMEFT }}^{(6)} \supset \frac{1}{\Lambda^{2}}\left\{\left(\mathcal{c}_{l q}^{(1)}+\mathcal{C}_{l q}^{(3)}\right)_{i j}\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{e}_{L i} \gamma_{\mu} e_{L j}\right)+\left(\mathcal{C}_{l q}^{(1)}-\mathcal{C}_{l q}^{(3)}\right)_{i j}\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\nu}_{L i} \gamma_{\mu} \nu_{L j}\right)\right. \\
& \left.\quad+2 V_{c s}\left[\mathcal{C}_{l q}^{(3)}\right]_{i j}\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{e}_{L i} \gamma_{\mu} \nu_{L j}\right)+\left[\mathcal{C}_{l d}\right]_{i j}\left(\bar{s}_{R} \gamma^{\mu} b_{R}\right)\left[\left(\bar{\nu}_{L i} \gamma_{\mu} \nu_{L j}\right)+\left(\bar{e}_{L i} \gamma_{\mu} e_{L j}\right)\right]+\text { h.c. }\right\}
\end{aligned}
$$

- Coupling to muons are tightly constrained by $\mathscr{B}\left(B_{s} \rightarrow \mu \mu\right)$ and $R_{K^{*}}$
- Coupling to taus allowed, predicting

$$
\frac{\mathscr{B}\left(B_{s} \rightarrow \tau \tau\right)}{\mathscr{B}\left(B_{s} \rightarrow \tau \tau\right)_{\mathrm{SM}}} \simeq \frac{\mathscr{B}\left(B \rightarrow K^{(*)} \tau \tau\right)}{\mathscr{B}\left(B \rightarrow K^{(*)} \tau \tau\right)_{\mathrm{SM}}} \simeq 10
$$

Examples for concrete models

- Z^{\prime} coupled to RH quarks

$$
\begin{gathered}
\mathscr{L}_{Z^{\prime}} \supset g_{b s}\left(\bar{s}_{R} \gamma^{\mu} b_{R}\right) Z_{\mu}^{\prime}+g_{\tau \tau}\left(\bar{L}_{3} \gamma^{\mu} L_{3}\right) Z_{\mu}^{\prime} \\
B^{0}-\bar{B}^{0} \text { mixing constrain }\left|g_{s b}\right| / m_{Z^{\prime}} \lesssim 2 \times 10^{-3} \mathrm{TeV}^{-1} \\
\frac{\text { Cannot fit data with perturbative } g_{\tau \tau}}{}
\end{gathered}
$$

- \tilde{R}_{2} leptoquark

$$
\mathscr{L}_{\tilde{R}_{2}} \supset y_{i j}^{R}\left(\bar{d}_{R i} \tilde{R}_{2} i \tau_{2} L_{j}\right)+h . c .
$$

$$
\text { Upper bound } m_{L Q} \lesssim 3 \mathrm{TeV}
$$

Difficult to accommodate such a large excess, but possible

Implications of $B \rightarrow K \nu \bar{\nu}$ for BSM

- LEFT
- SMEFT
- Light new physics

$$
\mathcal{O}_{\exp }=\mathcal{O}_{\mathrm{SM}}\left(1+\delta_{\mathrm{NP}}\right)
$$

$B \rightarrow K^{(*)} \nu \bar{\nu}$ in the ν SMEFT

 Include a light RH neutrino field$$
\mathscr{L}_{\mathrm{Yukawa}}=-\bar{Q} Y_{d} H d_{R}-\bar{Q} Y_{u} \tilde{H} u_{R}-\bar{L} Y_{\ell} H e_{R}+\bar{L} Y_{\nu} \tilde{H} N_{R}+\frac{1}{2} \bar{N}_{R}^{c} M N_{R}+h . c
$$

Relation between flavor and mass eigenstates

$$
\begin{aligned}
& \nu_{L \alpha}=\sum_{i=1}^{4} U_{\alpha i} P_{L} n_{i} \\
& N_{R}=\sum_{i=1}^{4} U_{s i}^{*} P_{R} n_{i}
\end{aligned}
$$

$B \rightarrow K^{(*)} \nu \bar{\nu}$ in the ν SMEFT

 Include a light RH neutrino fieldOnly mass scale not set by the Higgs mechanism

$$
\mathscr{L}_{\text {Yukawa }}=-\bar{Q} Y_{d} H d_{R}-\bar{Q} Y_{u} \tilde{H} u_{R}-\bar{L} Y_{\ell} H e_{R}+\bar{L} Y_{\nu} \tilde{H} N_{R}+\frac{1}{2} \bar{N}_{R}^{c}(M) N_{R}+h . c .
$$

Relation between flavor and mass eigenstates

$$
\begin{aligned}
& \nu_{L \alpha}=\sum_{i=1}^{4} U_{\alpha i} P_{L} n_{i} \\
& N_{R}=\sum_{i=1}^{4} U_{s i}^{*} P_{R} n_{i}
\end{aligned}
$$

Need to include N_{R} in the EFT description!

$B \rightarrow K^{(*)} \nu \bar{\nu}$ in the ν SMEFT

Include a light RH neutrino field

Many more contributions when having a light RH neutrino

$$
\begin{aligned}
& \mathcal{L}_{\nu S M E F T}^{(6)} \supset \frac{1}{\Lambda^{2}}\left\{\mathcal{C}_{N d}\left(\bar{s}_{R} \gamma_{\mu} b_{R}\right)\left(\bar{N}_{R} \gamma^{\mu} N_{R}\right)+\mathcal{C}_{N Q}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{N}_{R} \gamma^{\mu} N_{R}\right)\right. \\
& +\left[\left\{\mathcal{C}_{L N Q d]_{i}}\right]_{\left.\bar{s}_{L} b_{R}\right)}\left(\bar{\nu}_{L i} N_{R}\right)-V_{C s}\left[\mathcal{C}_{L N Q d d_{i}}\left(\bar{c}_{L} b_{R}\right)\left(\overline{\bar{L}}_{i} N_{R}\right)\right.\right. \\
& \text { Correlation between } b \rightarrow \operatorname{s\nu L} \text { and } b \rightarrow c \tau \nu \\
& +\left[C_{L N Q d T]_{i}}\left(\bar{s}_{L} \sigma^{\mu \nu} b_{R}\right)\left(\bar{\nu}_{L L} \sigma_{\mu \nu} N_{R}\right)-V_{c s}\left[\mathcal{C}_{L N Q d T}\right]_{i}\left(\bar{c}_{L} \sigma^{\mu \nu} b_{R}\right)\left(\bar{\ell}_{L i} \sigma_{\mu \nu} N_{R}\right)+h . c\right\}
\end{aligned}
$$

In the LEFT we find additional operators

$$
\mathscr{L}^{b \rightarrow s \nu \nu}=\frac{4 G_{F}}{\sqrt{2}} \lambda_{t} \sum_{a} C_{a} \mathcal{O}_{a}+h . c . \begin{aligned}
& \mathcal{O}_{V_{R(L)}}=\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(n_{i} \gamma^{\mu}\left(1 \pm \gamma_{5}\right) n_{j}\right) \\
& \mathcal{O}_{S_{R L L}}=\left(\bar{s}_{L} b_{R}\right)\left(n_{i}\left(1 \pm \gamma_{5}\right) n_{j}\right) \\
& \mathcal{O}_{T}=\left(\bar{s}_{L} \sigma_{\mu \nu} b_{R}\right)\left(n_{i} \sigma^{\mu \nu} n_{j}\right)
\end{aligned}
$$

Also different kinematics when final state neutrino is massive $\rightarrow m_{\nu_{4}} \neq 0$

$B \rightarrow K^{(*)} \nu \bar{\nu}$ in the ν SMEFT

Include a light RH neutrino field

Many more contributions when having a light RH neutrino

$$
\begin{aligned}
\mathcal{L}_{\nu S M E F T}^{(6)} \supset \frac{1}{\Lambda^{2}}\{ & \mathcal{C}_{N d}\left(\bar{s}_{R} \gamma_{\mu} b_{R}\right)\left(\bar{N}_{R} \gamma^{\mu} N_{R}\right)+\mathcal{C}_{N Q}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{N}_{R} \gamma^{\mu} N_{R}\right) \quad \text { Correlation between } b \rightarrow \text { SVL and } b \rightarrow c \tau \nu \\
& +\left[\mathcal{C}_{L N Q d}\right]_{i}\left(\bar{s}_{L} b_{R}\right)\left(\bar{\nu}_{L i} N_{R}\right)-V_{c s}\left[\mathcal{C}_{L N Q d}\right]_{i}\left(\bar{c}_{L} b_{R}\right)\left(\bar{\ell}_{L i} N_{R}\right) \quad \text { C } \\
& \left.+\left[\mathcal{C}_{L N Q d T}\right]_{i}\left(\bar{s}_{L} \sigma^{\mu \nu} b_{R}\right)\left(\bar{\nu}_{L i} \sigma_{\mu \nu} N_{R}\right)-V_{c s}\left[\mathcal{C}_{L N Q d T}\right]_{i}\left(\bar{c}_{L} \sigma^{\mu \nu} b_{R}\right)\left(\bar{\ell}_{L i} \sigma_{\mu \nu} N_{R}\right)+h . c\right\}
\end{aligned}
$$

Going from the ν SMEFT to the LEFT with massive neutrinos

$$
\begin{aligned}
& \nu_{L \alpha}=\sum_{i=1}^{4} U_{\alpha i} P_{L} n_{i} \\
& N_{R}=\sum_{i=1}^{4} U_{s i}^{*} P_{R} n_{i}
\end{aligned}
$$

$$
\mathscr{L}_{\nu \mathrm{SMEFT}}^{(6)} \sim \frac{1}{\Lambda^{2}} C_{N d}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{N}_{R} \gamma^{\mu}\left(1+\gamma_{5}\right) N_{R}\right)
$$

$$
\mathscr{L}_{L E F T}^{(6)} \sim \frac{1}{\Lambda^{2}} \sum_{i, j} U_{s i} C_{N d} U_{s j}^{*}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{n}_{i} \gamma^{\mu}\left(1+\gamma_{5}\right) n_{j}\right)
$$

$B \rightarrow K^{(*)} \nu \bar{\nu}$ in the ν SMEFT

Include a light RH neutrino field

Many more contributions when having a light RH neutrino

$$
\begin{aligned}
& \mathcal{L}_{\nu S M E F T}^{(6)} \supset \frac{1}{\Lambda^{2}}\left\{\mathcal{C}_{N d}\left(\bar{s}_{R} \gamma_{\mu} b_{R}\right)\left(\bar{N}_{R} \gamma^{\mu} N_{R}\right)+\mathcal{C}_{N Q}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{N}_{R} \gamma^{\mu} N_{R}\right) \quad \text { Correlation between } b \rightarrow \text { SVL and } b \rightarrow c \tau \nu\right. \\
&+\left[\mathcal{C}_{L N Q d}\right]_{i}\left(\bar{s}_{L} b_{R}\right)\left(\bar{\nu}_{L i} N_{R}\right)-V_{c s}\left[\mathcal{C}_{L N Q d}\right]_{i}\left(\bar{c}_{L} b_{R}\right)\left(\bar{\ell}_{L i} N_{R}\right) \quad \text { Col } \\
&\left.+\left[\mathcal{C}_{L N Q d T}\right]_{i}\left(\bar{s}_{L} \sigma^{\mu \nu} b_{R}\right)\left(\bar{\nu}_{L i} \sigma_{\mu \nu} N_{R}\right)-V_{c s}\left[\mathcal{C}_{L N Q d T}\right]_{i}\left(\bar{c}_{L} \sigma^{\mu \nu} b_{R}\right)\left(\bar{\ell}_{L i} \sigma_{\mu \nu} N_{R}\right)+h . c\right\}
\end{aligned}
$$

Going from the ν SMEF Neglect active-heavy mixing!

$$
\begin{gathered}
\nu_{L \alpha} \simeq \sum_{i=1}^{3} U_{\alpha i} P_{L} n_{i} \\
N_{R} \simeq P_{R} n_{4}
\end{gathered}
$$

$$
\mathscr{L}_{\nu \mathrm{SMEFT}}^{(6)} \sim \frac{1}{\Lambda^{2}} C_{N d}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{N}_{R} \gamma^{\mu}\left(1+\gamma_{5}\right) N_{R}\right)
$$

$$
\mathscr{L}_{L E F T}^{(6)} \sim \frac{1}{\Lambda^{2}} C_{N d}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{n}_{4} \gamma^{\mu}\left(1+\gamma_{5}\right) n_{4}\right)
$$

$B \rightarrow K^{(*)} \nu \bar{\nu}$ in the ν SMEFT

Can we tell apart between SMEFT and ν SMEFT?

For vector and tensor operators with (massless)
RH neutrinos the EFT bound still applies

$$
\frac{\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)}{\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)_{\mathrm{SM}}} \geq \frac{\mathscr{B}(B \rightarrow K \nu \bar{\nu})}{\mathscr{B}(B \rightarrow K \nu \bar{\nu})_{\mathrm{SM}}}\left(1-\frac{\eta_{V}^{K^{*}}}{4}\right)
$$

$B \rightarrow K^{(*)} \nu \bar{\nu}$ in the ν SMEFT

Can we tell apart between SMEFT and ν SMEFT?

For vector and tensor operators with (massless)
RH neutrinos the EFT bound still applies

$$
\frac{\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)}{\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)_{\mathrm{SM}}} \geq \frac{\mathscr{B}(B \rightarrow K \nu \bar{\nu})}{\mathscr{B}(B \rightarrow K \nu \bar{\nu})_{\mathrm{SM}}}\left(1-\frac{\eta_{V}^{K^{*}}}{4}\right)
$$

Neglecting active-heavy neutrino mixing

$B \rightarrow K^{(*)} \nu \bar{\nu}$ in the ν SMEFT

Can we tell apart between SMEFT and ν SMEFT?

For vector and tensor operators with (massless)
RH neutrinos the EFT bound still applies
$\frac{\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)}{\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)_{\mathrm{SM}}} \geq \frac{\mathscr{B}(B \rightarrow K \nu \bar{\nu})}{\mathscr{B}(B \rightarrow K \nu \bar{\nu})_{\mathrm{SM}}}\left(1-\frac{\eta_{V}^{K^{*}}}{4}\right)$

Having $m_{\nu_{4}} \neq 0$ suppresses $\mathscr{B}\left(B \rightarrow K^{*} \nu \nu\right)$

$B \rightarrow K^{(*)} \nu \bar{\nu}$ in the ν SMEFT

Can we tell apart between SMEFT and ν SMEFT?

For vector and tensor operators with (massless)
RH neutrinos the EFT bound still applies

$$
\frac{\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)}{\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)_{\mathrm{SM}}} \geq \frac{\mathscr{B}(B \rightarrow K \nu \bar{\nu})}{\mathscr{B}(B \rightarrow K \nu \bar{\nu})_{\mathrm{SM}}}\left(1-\frac{\eta_{V}^{K^{*}}}{4}\right)
$$

Only for $m_{\nu_{4}} \simeq\left(m_{B}-m_{K^{*}}\right)$ the tensor operator is not ruled out

$B \rightarrow K^{(*)} \nu \bar{\nu}$ in the ν SMEFT

Can we tell apart between SMEFT and ν SMEFT?

For vector and tensor operators with (massless)
RH neutrinos the EFT bound still applies

$$
\frac{\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)}{\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)_{\mathrm{SM}}} \geq \frac{\mathscr{B}(B \rightarrow K \nu \bar{\nu})}{\mathscr{B}(B \rightarrow K \nu \bar{\nu})_{\mathrm{SM}}}\left(1-\frac{\eta_{V}^{K^{*}}}{4}\right)
$$

One could however break this relation with scalar operators

$B \rightarrow K^{(*)} \nu \bar{\nu}$ in the ν SMEFT

Can we tell apart between SMEFT and ν SMEFT?

For vector and tensor operators with (massless)
RH neutrinos the EFT bound still applies
$\frac{\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)}{\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)_{\mathrm{SM}}} \geq \frac{\mathscr{B}(B \rightarrow K \nu \bar{\nu})}{\mathscr{B}(B \rightarrow K \nu \bar{\nu})_{\mathrm{SM}}}\left(1-\frac{\eta_{V}^{K^{*}}}{4}\right)$

One could however break this relation with scalar operators

Only realized when

$$
\frac{\mathscr{B}(B \rightarrow K \nu \bar{\nu})}{\mathscr{B}(B \rightarrow K \nu \bar{\nu})_{\mathrm{SM}}} \geq 11.4(5)
$$

$B \rightarrow K^{(*)} \nu \bar{\nu}$ in the ν SMEFT

Can we tell apart between SMEFT and ν SMEFT?

For vector and tensor operators with (massless)
RH neutrinos the EFT bound still applies
$\frac{\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)}{\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)_{\mathrm{SM}}} \geq \frac{\mathscr{B}(B \rightarrow K \nu \bar{\nu})}{\mathscr{B}(B \rightarrow K \nu \bar{\nu})_{\mathrm{SM}}}\left(1-\frac{\eta_{V}^{K^{*}}}{4}\right)$

One could however break this relation with scalar operators

$$
\frac{\left[\mathcal{C}_{L N Q d}\right]_{i}\left(\bar{s}_{L} b_{R}\right)\left(\bar{\nu}_{L i} N_{R}\right)-V_{c s}\left[\mathcal{C}_{L N Q d}\right]_{i}\left(\bar{c}_{L} b_{R}\right)\left(\bar{e}_{L i} N_{R}\right)}{\text { Effect of non-zero } U_{\alpha 4} \text { ? }} \text { Impact on } R_{D}^{(*)}
$$

Neglecting active-heavy neutrino mixing

$B \rightarrow K^{(*)} \nu \bar{\nu}$ in the ν SMEFT

Can we tell apart between SMEFT and ν SMEFT?

Light mediators?

Effect of a light vector mediator

W. Altmannshofer et al., arXiv:2311.14629

The excess is compatible with $B \rightarrow K X(\rightarrow \nu \nu)$ with X produced on-shell

Summary and outlook

Conclusions

$$
\left.\mathscr{B}\left(B^{ \pm} \rightarrow K^{ \pm} \nu \bar{\nu}\right)\right|_{\mathrm{SM}}=(4.44 \pm 0.30) \times 10^{-6}
$$

$$
\text { Theoretically cleaner than } B \rightarrow K^{(*)} \mu \mu
$$

Two main uncertainties from the theory side:

- CKM matrix element determination: Inclusive vs exclusive $V_{c b}$ Can change prediction by $\mathcal{O}(10 \%)$

Conclusions

$\left.\mathscr{B}\left(B^{ \pm} \rightarrow K^{ \pm} \nu \bar{\nu}\right)\right|_{\mathrm{SM}}=(4.44 \pm 0.30) \times 10^{-6}$
Theoretically cleaner than $B \rightarrow K^{(*)} \mu \mu$
Two main uncertainties from the theory side:

- CKM matrix element determination: Inclusive vs exclusive $V_{c b}$ Can change prediction by $\mathcal{O}(10 \%)$
- Form factor determination: $\left\{\begin{array}{ll|}B \rightarrow K \nu \bar{\nu} & \text { Error } \mathcal{O}(5 \%) \\ B \rightarrow K^{*} \nu \bar{\nu} & \text { Error } \mathcal{O}(15 \%) \\ \hline\end{array}\right.$

Conclusions

$\left.\mathscr{B}\left(B^{ \pm} \rightarrow K^{ \pm} \nu \bar{\nu}\right)\right|_{\mathrm{SM}}=(4.44 \pm 0.30) \times 10^{-6}$
Theoretically cleaner than $B \rightarrow K^{(*)} \mu \mu$
Two main uncertainties from the theory side:

- CKM matrix element determination: Inclusive vs exclusive $V_{c b}$ Can change prediction by $\mathcal{O}(10 \%)$
- Form factor determination: $\left\{\begin{array}{ll|}B \rightarrow K \nu \bar{\nu} & \text { Error } \mathcal{O}(5 \%) \\ B \rightarrow K^{*} \nu \bar{\nu} & \text { Error } \mathcal{O}(15 \%) \\ \hline\end{array}\right.$

Eventually need to match the expected sensitivity by Belle-II
$\left.\mathscr{B}\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right)\right|_{\text {Belle-II }}=(2.3 \pm 0.7) \times 10^{-5}$

$$
\mathscr{L}^{b \rightarrow s \nu \nu}=\frac{4 G_{F}}{\sqrt{2}} \lambda_{t} \sum_{i, j}\left(C_{L}^{\nu_{i} \nu_{j}} \mathcal{O}_{L}^{\nu_{i} \nu_{j}}+C_{R}^{\nu_{i} \nu_{\nu}} \widehat{\mathcal{O}}_{R}^{\nu_{i} \nu_{j}}\right)+h . c .
$$

Contributions from only $C_{L}^{\nu_{j} \nu_{j}}$
Contributions from only $C_{R}^{\nu_{i} \nu_{j}}$ can explain are tightly constrained by Belle

$$
B \rightarrow K \nu \bar{\nu} \text {, correlated with } \mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right) \text { and } F_{L}
$$

Conclusions

SMEFT

- Couplings to μ constrained by $B_{s} \rightarrow \mu \mu$
- NP couplings allowed in τ leptons:
$\frac{\mathscr{B}\left(B_{s} \rightarrow \tau \tau\right)_{\mathrm{BSM}}}{\mathscr{B}\left(B_{s} \rightarrow \tau \tau\right)_{\mathrm{SM}}} \sim 10$

LSMEFT

- Scalar and tensor operators also contribute
- One can always suppress the NP effect on $B \rightarrow K^{*} \nu \nu$ with $m_{\nu_{4}} \sim\left(m_{B}-m_{K^{*}}\right)$

Conclusions

SMEFT

- Couplings to μ constrained by $B_{s} \rightarrow \mu \mu$
- NP couplings allowed in τ leptons:
$\frac{\mathscr{B}\left(B_{s} \rightarrow \tau \tau\right)_{\mathrm{BSM}}}{\mathscr{B}\left(B_{s} \rightarrow \tau \tau\right)_{\mathrm{SM}}} \sim 10$
Is it possible to tell them apart?
- Measurement of F_{L}
- $B_{s} \rightarrow \nu \nu$
- q^{2}-distribution of events
- High- p_{T} tails? Constraints on sca
- Complementary processes: B^{0} LSMEFT

Conclusions

SMEFT

- Couplings to μ constrained by $B_{s} \rightarrow \mu \mu$
- NP couplings allowed in τ leptons:
$\frac{\mathscr{B}\left(B_{s} \rightarrow \tau \tau\right)_{\mathrm{BSM}}}{\mathscr{B}\left(B_{s} \rightarrow \tau \tau\right)_{\mathrm{SM}}} \sim 10$
Is it possible to tell them apart?
- Measurement of F_{L}
- $B_{s} \rightarrow \nu \nu$
- q^{2}-distribution of events
- High- p_{T} tails? Constraints on scalar operators
- Complementary processes: $B^{0} \rightarrow K_{S} \nu \nu, \Lambda_{b} \rightarrow \Lambda \nu \nu$

Conclusions

SMEFT

- Couplings to μ constrained by $B_{s} \rightarrow \mu \mu$
- NP couplings allowed in τ leptons:
$\frac{\mathscr{B}\left(B_{s} \rightarrow \tau \tau\right)_{\mathrm{BSM}}}{\mathscr{B}\left(B_{s} \rightarrow \tau \tau\right)_{\mathrm{SM}}} \sim 10$
Is it possible to tell them apart?
- Measurement of F_{L}
- $B_{s} \rightarrow \nu \nu$?
- q^{2}-distribution of events
- $\mathrm{High}-p_{T}$ tails? Constraints on scalar operators
- Complementary processes: $B^{0} \rightarrow K_{S} \nu \nu, \Lambda_{b} \rightarrow \Lambda \nu \nu$

Conclusions

SMEFT

- Couplings to μ constrained by $B_{s} \rightarrow \mu \mu$
- NP couplings allowed in τ leptons:
$\frac{\mathscr{B}\left(B_{s} \rightarrow \tau \tau\right)_{\mathrm{BSM}}}{\mathscr{B}\left(B_{s} \rightarrow \tau \tau\right)_{\mathrm{SM}}} \sim 10$
Is it possible to tell them apart?
- Measurement of F_{L}
- $B_{s} \rightarrow \nu \nu$?
- q^{2}-distribution of events
- $\mathrm{High}-p_{T}$ tails? Constraints on scalar operators
- Complementary processes: $B^{0} \rightarrow K_{S} \nu \nu, \Lambda_{b} \rightarrow \Lambda \nu \nu$

Back-up slides

Tree-level contribution

$$
B^{ \pm} \rightarrow K^{ \pm(*)} \nu \bar{\nu}
$$

Charged meson decay modes have a tree-level contribution from the annihilation to an intermediate τ

Tree-level contribution

$$
B^{ \pm} \rightarrow K^{ \pm(*)} \nu \bar{\nu}
$$

$$
m_{B}>m_{\tau}>m_{K^{(*)}}
$$

Charged meson decay modes have a tree-level contribution from the annihilation to an intermediate τ

Using the narrow width approximation

$$
\mathscr{B}\left(B^{+} \rightarrow K^{(*)+} \nu \bar{\nu}\right) \sim \mathscr{B}\left(B^{+} \rightarrow \tau^{+} \nu\right) \mathscr{B}\left(\tau^{+} \rightarrow K^{(*)+} \bar{\nu}\right)
$$

Tree-level contribution

$$
B^{ \pm} \rightarrow K^{ \pm(*)} \nu \bar{\nu}
$$

J. F. Kamenik \& C.Smith, arXiv:0908.1174

Charged meson decay modes have a tree-level contribution from the annihilation to an intermediate τ

Using the narrow width approximation

$$
\begin{aligned}
& \mathscr{B}\left(B^{+} \rightarrow K^{(*)+} \nu \bar{\nu}\right) \sim \mathscr{B}\left(B^{+} \rightarrow \tau^{+} \nu\right) \mathscr{B}\left(\tau^{+} \rightarrow K^{(*)+} \bar{\nu}\right) \\
& \frac{\mathscr{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)_{\text {tree }}}{\mathscr{\mathscr { B }}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)_{\text {loop }}} \simeq 14 \%(11 \%)
\end{aligned}
$$

Tree-level contribution

$$
B^{ \pm} \rightarrow K^{ \pm(*)} \nu \bar{\nu}
$$

Charged meson decay modes have a tree-level contribution from the annihilation to an intermediate τ

Using the narrow width approximation

$$
\begin{aligned}
& \mathscr{B}\left(B^{+} \rightarrow K^{(*)+} \nu \bar{\nu}\right) \sim \mathscr{B}\left(B^{+} \rightarrow \tau^{+} \nu\right) \mathscr{B}\left(\tau^{+} \rightarrow K^{(*)+} \bar{\nu}\right) \\
& \frac{\mathscr{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)_{\text {tree }}}{\mathscr{\mathscr { B }}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)_{\text {loop }}} \simeq 14 \%(11 \%)
\end{aligned}
$$

Belle-II can in principle disentangle these two contributions

Reduction of uncertainties

Ratio between low and high $-q^{2}$ regions

Binned information would allow one to study the following CKM-free ratio

$$
r_{\text {low/high }} \equiv \frac{\mathscr{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)_{\text {low }-q^{2}}}{\mathscr{B}\left(B \rightarrow K^{(*)} \ell \ell\right)_{\text {high }-q^{2}}}
$$

Test of the extrapolated Lattice QCD form factors

Reduction of uncertainties

Ratio between low and high $-q^{2}$ regions

Binned information would allow one to study the following CKM-free ratio

$$
r_{\text {low/high }} \equiv \frac{\mathscr{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)_{\text {low }-q^{2}}}{\mathscr{B}\left(B \rightarrow K^{(*)} \ell \ell\right)_{\text {high }-q^{2}}}
$$

Test of the extrapolated Lattice QCD form factors

Independent of FF normalization and NP contributions (w/o N_{R})

Reduction of uncertainties

Ratio between low and high $-q^{2}$ regions

Binned information would allow one to study the following CKM-free ratio

$$
r_{\text {low/high }} \equiv \frac{\mathscr{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)_{\text {low }-q^{2}}}{\mathscr{B}\left(B \rightarrow K^{(*)} \ell \ell\right)_{\text {high }-q^{2}}}
$$

Test of the extrapolated Lattice QCD form factors

Independent of FF normalization and NP contributions (w/o N_{R})
Take bins $\left(0, q_{\max }^{2} / 2\right)$ and $\left(q_{\max }^{2} / 2, q_{\max }^{2}\right)$:

$$
r_{\text {low } / \text { high }}=1.91 \pm 0.06
$$

Using previous FLAG average

$$
r_{\text {low/high }}=2.15 \pm 0.26
$$

Reduction of uncertainties

Combination with $B \rightarrow K^{(*)} \mu \mu$

Binned information would allow one to study the following CKM-free ratio

$$
\left.\mathscr{R}_{\left.K^{*}\right)}^{(\nu / \ell)}\left[q_{0}^{2}, q_{1}^{2}\right] \equiv \frac{\mathscr{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)}{\mathscr{B}\left(B \rightarrow K^{*} \ell \ell\right)}\right|_{\left[q_{0}^{2}, q_{1}^{2}\right]} \quad \begin{aligned}
& \text { Partial branching fractions } \\
& \text { integrated in the same } q^{2} \text { range }
\end{aligned}
$$

Reduction of uncertainties

Combination with $B \rightarrow K^{(*)} \mu \mu$

Binned information would allow one to study the following CKM-free ratio

$$
\left.\mathscr{R}_{K^{(*)}}^{(\nu / \ell}\left[q_{0}^{2}, q_{1}^{2}\right] \equiv \frac{\mathscr{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)}{\mathscr{B}\left(B \rightarrow K^{(*)} \ell \ell\right)}\right|_{\left[q_{1}^{2}, q_{1}^{2}\right]} \quad \begin{aligned}
& \text { Partial branching fractions } \\
& \text { integrated in the same } q^{2} \text { range }
\end{aligned}
$$

FF uncertainties significantly reduced if $q^{2} \gg m_{\ell}^{2}$
Choosing the q^{2} region away from $c \bar{c}$-resonances, $\left[q_{0}^{2}, q_{1}^{2}\right] \rightarrow[1.1,6] \mathrm{GeV}^{2}$

Reduction of uncertainties

Combination with $B \rightarrow K^{(*)} \mu \mu$

Binned information would allow one to study the following CKM-free ratio

$$
\left.\mathscr{R}_{K^{(*)}}^{(\nu / \ell)}\left[q_{0}^{2}, q_{1}^{2}\right] \equiv \frac{\mathscr{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)}{\mathscr{B}\left(B \rightarrow K^{(*)} \ell \ell\right)}\right|_{\left[q_{0}^{2}, q_{1}^{2}\right]} \quad \begin{aligned}
& \text { Partial branching fractions } \\
& \text { integrated in the same } q^{2} \text { range }
\end{aligned}
$$

FF uncertainties significantly reduced if $q^{2} \gg m_{\ell}^{2}$
Choosing the q^{2} region away from $c \bar{c}$-resonances, $\left[q_{0}^{2}, q_{1}^{2}\right] \rightarrow[1.1,6] \mathrm{GeV}^{2}$
Using perturbative calculations for the $c \bar{c}$-loops one finds

$$
\begin{gathered}
\mathscr{R}_{K}^{(\nu / \mu)}[1.1,6]=7.58 \pm 0.04 \\
\lesssim \mathcal{O}(1 \%) \text { uncertainty }
\end{gathered}
$$

$$
\mathscr{R}_{K^{*}}^{(\nu / \mu)}[1.1,6]=8.6 \pm 0.3
$$

$$
\lesssim \mathcal{O}(5 \%) \text { uncertainty }
$$

Reduction of uncertainties

Combination with $B \rightarrow K^{(*)} \mu \mu$

Binned information would allow one to study the following CKM-free ratio

$$
\left.\mathscr{R}_{K^{(*)}}^{(\nu / \ell)}\left[q_{0}^{2}, q_{1}^{2}\right] \equiv \frac{\mathscr{B}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)}{\mathscr{B}\left(B \rightarrow K^{(*)} \ell \ell\right)}\right|_{\left[q_{0}^{2}, q_{1}^{2}\right]} \quad \begin{aligned}
& \text { Partial branching fractions } \\
& \text { integrated in the same } q^{2} \text { range }
\end{aligned}
$$

FF uncertainties significantly reduced if $q^{2} \gg m_{\ell}^{2}$
Choosing the q^{2} region away from $c \bar{c}$-resonances, $\left[q_{0}^{2}, q_{1}^{2}\right] \rightarrow[1.1,6] \mathrm{GeV}^{2}$
But we can use this ratio to extract C_{9} !

$$
\left.\frac{1}{\mathscr{R}_{K}^{\nu / \mu}[1.1,6]}\right|_{\mathrm{SM}} \simeq\left[7.5-0.45 C_{9}^{\mathrm{eff}}+0.42 \cdot\left(C_{9}^{\mathrm{eff}}\right)^{2}\right]
$$

Correlations between observables

Coupling to muons only
One can relate $B \rightarrow K \nu \bar{\nu}$ with $B_{s} \rightarrow \mu \mu$
$\mathscr{B}\left(B_{s} \rightarrow \mu \mu\right)=(3.35 \pm 0.27) \times 10^{-9}$

Correlations between observables

Coupling to muons only

One can relate $B \rightarrow K \nu \bar{\nu}$ with $B_{s} \rightarrow \mu \mu$

$$
\begin{aligned}
& \mathscr{B}\left(B_{s} \rightarrow \mu \mu\right)=(3.35 \pm 0.27) \times 10^{-9}
\end{aligned}
$$

$$
\begin{aligned}
& \delta C_{10}^{\ell_{10} \ell_{i}}=\frac{\pi}{\alpha_{\mathrm{em}} \lambda_{t}} \frac{v^{2}}{\Lambda^{2}}\left\{\left[\mathcal{C}_{l d}\right]_{i i}-\left[\mathcal{C}_{l q}^{(1)}\right]_{i i}-\left[\mathcal{C}_{l q}^{(3)}\right]_{i i}\right\}
\end{aligned}
$$

Correlations between observables

Coupling to muons only

One can relate $B \rightarrow K \nu \bar{\nu}$ with $B_{s} \rightarrow \mu \mu$

$$
\mathscr{B}\left(B_{s} \rightarrow \mu \mu\right)=(3.35 \pm 0.27) \times 10^{-9}
$$

$\delta{C_{10}^{\ell_{10} i_{i}}}=\frac{\pi}{\alpha_{e m} \lambda_{t}} \frac{v^{2}}{\Lambda^{2}}\left\{\left[c_{l d}\right]_{i i}-\left[c_{l q}^{(1)}\right]_{i i}-\left[c_{l q}^{(3)}\right]_{i i}\right\}$
Note that one could also use
$R_{\left.K^{*}\right)}$ now as well as a constrain

$$
R_{K^{(*)}}=\frac{\mathscr{B}\left(B \rightarrow K^{(*)} \mu \mu\right)}{\mathscr{B}\left(B \rightarrow K^{(*)} e e\right)} \frac{\mathcal{B}(B \rightarrow K}{\text { NP coupled to muons cannot explain Belle-II }}
$$

Correlations between observables

Coupling to tau leptons

Can we introduce NP to simultaneously explain the Belle-II result and $R_{D}^{(*)}$?

$$
\begin{gathered}
R_{D^{(*)}}=\frac{\mathscr{B}\left(B \rightarrow D^{(*)} \tau \bar{\nu}\right)}{\mathscr{B}\left(B \rightarrow D^{(*)} \ell \bar{\nu}\right)_{\text {HFLAV, arxiv:2206.07501 }}}, \text { with } \ell=e, \mu \\
\frac{R_{D^{(*)}}^{\exp } / R_{D^{(*)}}^{\mathrm{SM}}=1.16 \pm 0.05}{}
\end{gathered}
$$

Correlations between observables

Coupling to tau leptons

Can we introduce NP to simultaneously explain the Belle-II result and $R_{D}^{(*)}$?

$$
R_{D^{(*)}}=\frac{\mathscr{B}\left(B \rightarrow D^{(*)} \tau \bar{\nu}\right)}{\mathscr{B}\left(B \rightarrow D^{(*)} \ell \bar{\nu}\right)_{\text {HFLAV, arxiv.2006.07501 }}, \text { with } \ell=e, \mu}
$$

$$
R_{D^{(*)}}^{\exp } / R_{D^{(*)}}^{S M}=1.16 \pm 0.05
$$

BSM contributions to this process given by

$$
\frac{R_{D^{(*)}}}{R_{D^{(*)}}^{\mathrm{SM}}}=\left(1-\frac{v^{2}}{\Lambda^{2}} \frac{V_{c s}}{V_{c b}} \mathcal{C}_{l q}^{(3)}\right)^{2}
$$

Excluded by $\mathscr{B}\left(B \rightarrow K^{2}\right.$

Correlations between observables

Coupling to tau leptons

Can we introduce NP to simultaneously explain the Belle-II result and $R_{D}^{(*)}$?

$$
\begin{gathered}
R_{D^{(*)}}=\frac{\mathscr{B}\left(B \rightarrow D^{(*)} \tau \bar{\nu}\right)}{\mathscr{B}\left(B \rightarrow D^{(*)} \ell \bar{\nu}\right)_{\text {HFFLAV, axix.2206.07501 }}}, \text { with } \ell=e, \mu \\
R_{D^{(*)}}^{\exp } / R_{D^{(*)}}^{\mathrm{SM}}=1.16 \pm 0.05
\end{gathered}
$$

In this region $\mathscr{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)$ is ok and we expect for example

$$
\frac{\mathscr{B}\left(B_{s} \rightarrow \tau \tau\right)_{B S M}}{\mathscr{B}\left(B_{s} \rightarrow \tau \tau\right)_{\mathrm{SM}}} \simeq 10
$$

