LSST in the starting blocks Cyrille Doux LPSC Grenoble (CNRS/IN2P3)

on behalf of the Rubin/LSST-France group

GDR CoPhy - May 21st 2024

Vera C. Rubin Observatory

- Located at Cerro Pachón, Chili Atacama desert - 2647m high
- Wide-field telescope 3.5° FoV - 8.4 primary mirror - 6.4m effective
- LSSTCam camera 3.2 Gpix - 0.2"/pix - optical filters ugrizy

Legacy Survey of Space and Time

Wide-fast-deep photometric survey 2025-2035

- wide: 18000 deg2 in the southern sky
- fast: scanned every 3 days
- deep: up to magnitude r<27.5</p>
- ► Goals
 - Probing dark energy and dark matter
 - Taking an inventory of the solar system
 - Exploring the transient optical sky
 - Mapping the Milky Way

Expected number of objects (full survey, DR11)

- 20B galaxies, 17B resolved stars, 6M orbits of solar system bodies
- \sim 10 million live alerts every night = 10⁶ SNIa, 10⁶ asteroids, see <u>lse-163.lsst.io</u>

Project organization in a nutshell

- Rubin Observatory team serves high quality data to the community
- LSST science collaborations perform scientific analyses

Dark Energy Science Collaboration Transients and Variable Stars Science Collaboration Strong Lensing Science Collaboration Active Galactic Nuclei Science Collaboration Galaxies Science Collaboration Stars, Milky Way, and Local Volume Science Collaboration sse Solar System Science Collaboration Informatics and Statistics Science Collaboration

Cyrille Doux | GDR CoPhy | May 21st 2024

Lots of exciting news from

- Vera C. Rubin Observatory
- ► DESC
- LSST France

Optical design

Many milestones in 2024!

March 1 2024
April 27 2024
May 15 2024
July 3 2024
July 12 2024
July 19 2024
July 26 2024
July 29 2024
Sept 25 2024
Nov 11 2024
Jan 3 2025
/larch 26 2025

TMA Final Testing Complete M1M3 Coating Complete LSSTCam Shipping to Summit M2 Glass on TMA **ComCam Installed on TMA** LSSTCam Reverification Start M1M3 Glass on TMA ComCam First Photon LSSTCam Reverification End LSSTCam on TMA **Rubin First Photon** Rubin First Light

Subset of milestones listed on <u>https://dmtn-232.lsst.io/</u>

Telescope Mount Assembly (TMA)

Top to bottom: M2 mirror, LSST/ ComCam, M1M3 mirror

BTW, they're hiring devs, techs, etc.

Rubin data release timeline

Rubin Operations Survey and Data Release Timeline

Nominal LSST Start Date: August 2025

Event	Date Range	2024					2025																	
Data Preview 0.1	Delivered Jun 2021																							
Data Preview 0.2	Delivered Jun 2022																							
Data Preview 0.3	Delivered Jun 2023																							
Data Preview 1	Oct 2024 – Jul 2025																							
System First Light	Jan 2025 – May 2025																							
Start of Operations	May 2025 – Sep 2025																							
Start of LSST (SVY)	May 2025 – Nov 2025																							
Data Preview 2	Nov 2025 – May 2026																							
Data Release 1	May 2026 – Jan 2027																							
Data Release 2	May 2027 – Jan 2028																							
Data Release 3	May 2028 – Nov 2028																							
		J	F	М	A	MJ	J	A	s	0	N	D	I F	N	1 A	M	I J	A	s	0	N	D	J	F

https://rtn-011.lsst.io/

Commissioning

in-dome/on-sky engineering - system optimisation - science validation surveys

Observing strategy

Balancing science drivers

Wide-fast-deep survey

- 18,000 deg² in *ugrizy* observed 3 times/week
- 800 visits/patch after 10 years (uneven across bands)

Deep drilling fields

- 5 DDFs, 21000 visits (40000 for COSMOS)
- ► ~6% of total survey time

See <u>survey-strategy.lsst.io</u>

- SCOC reports (due fall 2024) and more
- DESC recommendations to update *rolling* cadence for WFD, DDF and ultra DF to balance SN and WL requirements (see <u>Gris+23</u>; <u>Gris+24</u> for SN+WL deep fields)

Coadded depth in griz bands

Cyrille Doux | GDR CoPhy | May 21st 2024

17

Dark Energy Science Collaboration

Spokesperson: Renée Hložek; deputy spokesperson: Tesla Jeltema

- <u>DESC</u> = 1100 + members in 20 + countries
- ► Goals
 - 1. Four main probes: galaxy lensing and clustering, galaxy clusters and type-la supernovæ
 - 2. Constraints on dark energy, dark matter, neutrinos, inflation, etc.
 - 3. Combinations with external data: spectro, CMB, etc.
 - 4. More probes: strong lensing, stellar streams, etc.
- News
 - DESC members taking part in Rubin commissioning (rehearsals)
 - Getting ready for early science (DR1) and LSST Y1 (DR2) in 2027
 - DESC-Roman simulations effort to include Euclid starting

Cyrille Doux | GDR CoPhy | May 21st 2024

DESC-Roman image simulation

Troxel+23

LSST France Camera, commissioning, computing, science activities

LSST-France

IN2P3-PI: J Bregeon; Camera: P. Antilogus; Computing: D. Boutigny; Tech: F. Hernandez; Commissioning: J. Neveu, T. Guillemin; Science: C. Doux; INSU: S. Blondin

- 10 IN2P3 labs + ~10 INSU PIs Rubin data right holders
- ► Frequent <u>news/articles</u> (Gaëlle Shifrin) at <u>lsst.fr</u>
- French contributions to LSST
 - 1. Camera hardware/software contributions
 - 2. Computing: storage/processing of LSST data
 - 3. Science analysis in DESC, ISSC, Galaxies, TVS, etc.
- See details in <u>https://sitcomtn-050.lsst.io/</u> and <u>LSST-France plaquette</u>

Camera

- Camera hardware contributions
 - CCD electronics \checkmark
 - Filter exchange/loading system ✓
 - Control command

Johan Bregeon (LPSC)

LSSTCam CCD raft flat

Thibault Guillemin (LAPP)

LSSTCam CCD + electronics

LSSTCam filter exchange system

- Camera commissioning (ongoing)
 - Ghosts and optics alignment
 - Amplifier biases and stability
 - Brighter-fatter effect and other distortions

Photometric calibration

Auxiliary Telescope (<u>AuxTel</u>)

M. Rodriguez Monroy, M. Moniez, S. Dagoret, J. Neveu (IJCLab) et al.

 Characterization of atmosphere (water vapor vs airmass) from slitless spectroscopy for color correction

Collimated Beam Projector (CBP)

T. Souverin, J. Neveu, P. Fagrelius, E. Urbach et al.

Reversed telescope to calibrate LSST filter+CCD throughputs from artificial stars (monochromatic collimated beam)

► StarDICE

M. Betoule et al.

- Accurate photometry (<mmag) reference stars for photometric calibration (SNIa)
- First light at Observatoire de Haute Provence in 2023

Cyrille Doux | GDR CoPhy | May 21st 2024

AuxTel holograms

LSST telescope with flat field + CBP

Raw Data: 20TB/night

Sequential 30s images covering the entire visible sky every few days

Prompt Data Products • Alerts incl. science, template and difference image cutouts

- Catalogs of detections incl. difference images, transient, variable & solar system sources
- Raw & processed visit images (PVIs), difference images

Data Release Data Products

Final 10yr Data Release:

- Images: 5.5 million x 3.2 Gpixels
- Catalog: 15PB, 37 billion objects _

Access to proprietary data and the Science Platform require Rubin data rights

Credit: Leanne Guy

Rubin Science Platform

Provides access to LSST Data Products and services for all science users and project staff.

Computing

US Data Facility SLAC, California, USA

Archive Center **Alert Production** Data Release Production (35%) **Calibration Products Production** Long-term storage Data Access Center Data Access and User Services

HQ Site AURA, Tucson, USA

Observatory Management Data Production System Performance **Education and Public Outreach**

Dedicated Long Haul Networks

Two redundant 100 Gb/s links from Santiago to Florida (existing fiber) Additional 100 Gb/s link (spectrum on new fiber) from Santiago-Florida (Chile and US national links not shown)

UK Data Facility IRIS Network, UK

Data Release Production (25%)

France Data Facility CC-IN2P3, Lyon, France

Data Release Production (40%) Long-term storage

Summit and Base Sites

Observatory Operations Telescope and Camera **Data Acquisition** Long-term storage Chilean Data Access Center

Computing

- Data Release Processing
 - Split = 40% CC-IN2P3 ↓ + 35% SLAC ≠ + 25% IRIS/UK ₩
 - 20TB/night \rightarrow 5PB of additional data to reprocess yearly
 - 11th data release (DR11) after 10 years ~500 PB

LSST at CC-IN2P3

D. Boutigny, F. Hernandez, Q. Le Boulc'h, G. Mainetti

- Getting ready to import, process and export data
 - Data transfer (Rucio+FTS3), storage (dCache), catalogs database (Qserv), Rubin Science Platform (TBC)
 - Installed 1300+ additional cores for LSST
- Optimization of Instrument Signature Removal pipeline

_SST racks at CC-IN2P3

https://lse-163.lsst.io/

- few% extra-galactic
- Coupled to GCN: Fermi, Swift, Icecube, LVK, ...

Community-driven: scientists bring building bricks 60+ members, 15+ scientific topics covered https://fink-broker.org

Slide by Julien Peloton (IJCLab), Emille Ishida (LPC)

Supernovæ

- Observing strategy and deep drilling fields P. Gris et al.
- DC2 analysis with LSST difference imaging pipelines B. Sanchez et al.
 - Photometric calibration from scene modelling
 - Comparison between DC2 and DES Y5 SN
- Peculiar velocities and $f\sigma_8$ measurements D. Rosselli et al.
- ZTF : see Mickaël's and Madeleine's talks!

Bruno Sanchez (CPPM) et al.

Clusters

- Characterization of cluster finders on **DC2** simulation
 - Calibration of mass-richness relation
 - Impact of LSST photo-z's
- Cluster cosmology pipeline for LSST Y1
 - Cluster count and stacked lensing profiles
 - Public and modular code <u>CLMM</u>
- LSST DESC Data Challenge 2
 - N-body + image sims
 - See <u>data.lsstdesc.org</u>

Mass-richness for the WaZP and redMaPPer cluster finders on DC2

Rance Solomon (LAPP), Michel Aguena, Marina Ricci (APC) et al.

C. Payerne, C. Combet (LPSC), M. Ricci (APC) et al.

Weak lensing and clustering

Blending in LSST

Key figures

- 2/3 of galaxies will be blended <u>sanchez+22</u>
- 40% recognized + 20% unrecognized by pipelines
- Rubin uses the Scarlet deblender v1:<u>Melchior+18</u> and v2:<u>Sampson+24</u>

DESC (de)blending projects

- Impact on detection, shear and photo-z measurements (see M. Ramel's talk!)
- Deblending with galaxy priors encoded by deep generative models (B. Biswas et al., in prep.) using the Blending ToolKit (Mendoza et al., in prep.)
- Combining LSST+Roman+Euclid...

HSC image showing blended galaxies

Dawson+15

Weak lensing and clustering

Beyond two-point statistics

LSSTY1 joint clustering + lensing cosmology

- 3x2pt analysis...
- ...but also higher-order statistics
- High S/N expected in (mildly) non-linear scales

Simulation suite for LSST Y1 in development

- Testing hyperparameters (J. Mena-Fernandez et al., in prep.)
- Including systematic effects (in progress)

C. Doux, J. Mena-Fernandez, J. Harnois-Déraps, K. Heitman et al.

Summary

- Rubin Observatory has a mirror and a camera!
- Hardware commissioning is about to start
- Science pipelines commissioning will follow by fall 2024
- Beginning of LSST 10-year survey by mid 2025

Rubin/LSST-France meeting at CPPM, Marseille, 10-12 June 2024

nd a camera! t to start will follow by fall 2024 by mid 2025

Thanks!

DESC organization

DESC is a large international collaboration sharing collegial values and aiming at homogeneous, reproducible results, with percent precision on systematics, over the next 10+ years.

- yrs. Each role is rotated regularly.
- DESC is committed to actively fostering an equitable, diverse, and inclusive environment
- Junior scientists represents ~40 % of the collaboration : they can serve in committees and lead WG
- Software must follow coding guideline, be made public and most are available on <u>https://github.com/LSSTDESC</u>

• DESC is a representative democracy. Policies are ratified by the CC, the CC members and spokesperson are elected for 2

Commissioning data collection

Outline plan for the collection of commissioning data, as of October 2023.

Electro-optical Testing at Level 3	In-dome Engineering	On-sky Engineering	System Optimization	Science Validation Survey(s)
biases, darks, flats	suite of in-dome calibration	Initial alignment, pointing re-verification, AOS testing star flats, dithering around bright stars, airmass scans	20-year LSST WFD equivalent depth in fields for extragalactic, Galactic, and Solar System science, ~100 deg ² in multiple bands with dense temporal sampling	Menu includes pilot LSST WFD survey, ~1000 deg² in multiple bands to 1-2 year LSST equivalent depth Increase coverage of LSST DDFs Astrophysical targets / ToO
	Start On-Sky	System	Start Science Validation Surveys	Start 10-year LSST

https://rtn-011.lsst.io/

Commissioning timeline

https://rtn-011.lsst.io/

Weak lensing surveys

Stage I to Stage IV

Survey	Area	Bands	Depth	Density
SDSS-II and III	$\sim 10000{\rm deg}^{28}$	ugriz	r ~ 23.5	~ 2 gal/arcmin ²
DES	5 000 deg²	grizY	r ~ 24.3 (10σ)	~ 6 gal/arcmin ²
KiDS (+VIKING)	1 350 deg ²	ugri(+ZYJHK_s)⁹	r ~ 24.9 (5σ)	~ 6 gal/arcmin ²
HSC	1 400 deg ²	grizy	r ~ 26.1 (5σ)	~ 20 gal/arcmin ²
LSST	18 000 deg ²	ugrizY	r ~ 27.5 (5σ)	~ 30 gal/arcmin ²
Euclid	15 000 deg ²	Visible+YJH ¹⁰	m _{AB} ~ 24.5 (10σ, ext)	~ 30 gal/arcmin ²
Roman HLS	2 000 deg ²	YJH	Y ~ 26.5	~ 30 gal/arcmin ²

