

Bayesian field-level inference of primordial non-Gaussianity using next-generation galaxy surveys

Guilhem Lavaux (IAP/CNRS)

A. Andrews (INAF Bologna) J. Jasche (Stockholm U.)

GDR CoPhy, IP2I, Lyon (May 21-23, 2024)

Cosmological context: current paradigm

Inflation Accelerated expansion of the Universe

We want physics here

13.8 billion years

The present Universe

We observe here

Image credit: Planck collaboration

Cosmological context: current paradigm

Inflation Accelerated expansion of the Universe

Formation of light and matter

are coupled Dark matter evolves independently: it sta

Light and matter are coupled

Dark matter evolves independently: it starts clumping and forming a web of structures

Light and matter Dark ages separate Atoms start feeling

separate Atoms start feeling • Protons and electrons form atoms cosmic web of dark

 Light starts travelling freely: it will become the Cosmic Microwave Background (CMB)
 matter First stars

The first stars and galaxies form in the densest knots of the cosmic web Galaxy evolution

The present Universe

Dynamical evolution of the universe from first instant to present time Causality

Image credit: Planck collaboration

Bayesian Physical forward modeling

• Field-level inference

- Beyond summary statistics
- Beyond random realizations

Causal inference

- Beyond associative analyses
- Easier to incorporate systematic effects than on summaries
- Harder to separate model misspecifications

• Non-linear and dynamical inference

- Beyond linear structure growth
- Redshift Distortions
- Light-Cone effects

A simplified summary of the procedure

BORG: A large scale MCMC framework

- BORG's MCMC framework allows building flexible data models
 - Hierarchical Bayes and block sampling
 - Efficient Hamiltonian Monte Carlo (HMC) technique
 - Fully differentiable physics forward model

Inferring f_{NL} with field level inference

$\Phi_{\rm primord} = \phi_g + f_{\rm NL} \left(\phi_g^2 - \langle \phi_g^2 \rangle \right)$

Other generators in Scoccimarro et al. (2012)

Different choice possible:

- Log transform
- nLPT (1LPT, 2LPT)
- Quantum LPT (Uhlemann et al. 2019)
- PM-COLA (Tassev et al. 2013)
- LPT+Emulator (BORG-EMU, Jamieson et al. 2023, Doeser et al. 2024)
- Zoom-PM (Wempe et al. 2024 in prep)

For this work, we use 2LPT

Scale dependent bias

$$\rho_g = \bar{N} \left[1 + b_1 \delta_m + b_\phi f_{\rm NL} \phi_g^q \right]$$

$$\rho_g = \bar{N} \left[1 + b_1 \delta_m + b_\phi f_{\rm NL} (Q * \delta_m) \right] \qquad Q(k) \propto \frac{3\Omega_m H_0^2}{2k^2 T(k)}$$

Dalal et al. (2008), Slosar et al. (2008)

Advantages:

Reproduce phenomenology Easy to implement Relates to work on perturbation theory

Disadvantages:

Harder to work on real data Limited spatial resolution of the model Choice of dark matter / galaxy relation (2) : impact of choices of $b\Phi$ / b1 relation

Scale dependent bias

$$\rho_g = \bar{N} \left[1 + \mathbf{b}_1 \delta_m + \mathbf{b}_\phi f_{\rm NL} \phi_g^q \right]$$

f_{NL}=50, b₁=2.15

Choice of dark matter / galaxy relation (3): further improvements

Scale dependent bias

$$\rho_g = \bar{N} \left[1 + b_1 \delta_m + b_\phi f_{\rm NL} \phi_g^q \right] \qquad b_\phi = 2\delta_c (b_1 - p)$$

$$\rho_g = \bar{N} \left[1 + b_1 \delta_m + b_\phi f_{\rm NL} (Q * \delta_m) \right] \qquad Q(k) \propto \frac{3\Omega_m H_0^2}{2k^2 T(k)}$$

Dalal et al. (2008), Slosar et al. (2008)

Scale dependent bias (higher-order, Andrews et al in prep.)

$$\rho_g = \bar{N} \left[1 + \frac{b_1}{2} \delta_m + \frac{b_2}{2} \delta_m^2 + \frac{b_K}{K} K^2 + \frac{b_\phi}{M} f_{\rm NL} \phi_g^q + \frac{b_{\phi,\delta}}{\delta} f_{\rm NL} \delta_m \phi_g^q \right]$$

Lazeyras et al. (2021), Barreira et al. (2021)

PineTree model (Ding et al. in prep)

see later

Andrews et al. (2023, 2024 in prep)

Test setup (mock data): visibility mask & radial selection

Self consistent mock data

Inferred maps with mock setup

Inferred f_{NL} for reference run (mock-BOSS survey)

Reported forecast for BOSS and BOSS-like data (p=1)

k_{max} = 0.05 h/Mpc

Lazeyras et al. (2023)

18

Reported constraints on f_{NI} in BOSS data (p=1)

k_{max} = 0.05 h/Mpc

Inferred f_{NL} for reference run (Stage-IV survey)

p=1 fixed, k_{max} = 0.2 h/Mpc

Forecast error to Stage-4 experiment

Relation to galaxy bias parameters

Forecast error for Euclid-like experiment

2

Improving Galaxy/Dark matter connection

PineTree & CHARM (ex-NPE = Neural Physical Engine) (S. Ding, S. Pandey, T. Charnock)

Ding et al (in prep), Pandey et al. (2024), Charnock et al 2020²⁵

PineTree: Physical and Interpretable NEtworks for TRacer Estimation/Emulation

overdensity field

PineTree forward model

halo catalogue

- Computed 40 N-body simulations
 - 500 Mpc/h, 512³ particles
 - \circ m_p = 3 x 10¹² M_o
- Training on:
 - baseline: one simulation
 - extended: 10 for training and 30 for validation
- Ideally: no training at all!

First look: mass function and halo field correlation

Preliminary

Second look: n(M), power spectra, bi-spectra

Ding et al. (in prep. 2024) 29

Preliminary

Effect of resolution on power spectrum

Increasing resolution

Increasing mass

Ding et al. (in prep. 2024)

Impact of kernel size on summaries / Information content

Summary & Outlook

Field level inference for primordial non-gaussianities

The road so far:

- BORG: an automated machine for cosmology
- Models:
 - Different dynamical models
 - Galaxy scale dependent bias
 - PineTree (demo-ed for mock halo catalog generation)
- Improvements through unlocking more modes
- Immediately achievable constraints with Stage IV: $|f_{NL}| < 5$

Field level inference for primordial non-gaussianities

The road so far:

- BORG: an automated machine for cosmology
- Models:
 - Different dynamical models
 - Galaxy scale dependent bias
 - PineTree (demo-ed for mock halo catalog generation)
- Improvements through unlocking more modes
- Immediately achievable constraints with Stage IV: $|f_{NL}| < 5$

In preparation:

- Detailed Euclid forecasts
- Test of inference on Quijote halo mocks
- PineTree

Field level inference for primordial non-gaussianities

The road so far:

- BORG: an automated machine for cosmology
- Models:
 - Different dynamical models
 - Galaxy scale dependent bias
 - PineTree (demo-ed for mock halo catalog generation)
- Improvements through unlocking more modes
- Immediately achievable constraints with Stage IV: $|f_{NI}| < 5$

In preparation:

- Detailed Euclid forecasts
- Test of inference on Quijote halo mocks
- PineTree

Future:

• Inference on large galaxy catalogs (notably Euclid)