
GDR CoPhy, IP2I, Lyon (May 21-23, 2024)

Guilhem Lavaux (IAP/CNRS)

A. Andrews (INAF Bologna)
J. Jasche (Stockholm U.)

with Aquila consortium, Euclid Collaboration & Learning the 
Universe collaboration

 Bayesian field-level inference of 
primordial non-Gaussianity using 
next-generation galaxy surveys

1
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Cosmological context: current paradigm

We observe hereWe want physics 
here



Dynamical evolution of the universe from first instant to present time
Causality

Image credit: Planck collaboration
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Cosmological context: current paradigm



Bayesian Physical forward modeling

● Field-level inference
○ Beyond summary statistics
○ Beyond random realizations

● Causal inference
○ Beyond associative analyses
○ Easier to incorporate systematic 

effects than on summaries
○ Harder to separate model 

misspecifications
● Non-linear and dynamical inference

○ Beyond linear structure growth
○ Redshift Distortions
○ Light-Cone effects

Jasche & Lavaux 2019

Motivation: A complete characterization of cosmic structure

4

https://ui.adsabs.harvard.edu/abs/2019A%26A...625A..64J/abstract
https://docs.google.com/file/d/1MxJnVQeCPa9pQON5wdNvXCNyhWNfJemM/preview


A simplified summary of the procedure
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Ω
Structure Formation Model Data modelPrior Model 𝜶



Jasche & Lavaux 2019
Jasche & Wandelt 2014

BORG: A large scale MCMC framework
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● BORG’s MCMC framework allows building flexible data models

○ Hierarchical Bayes and block sampling

○ Efficient Hamiltonian Monte Carlo (HMC) technique

○ Fully differentiable physics forward model

https://ui.adsabs.harvard.edu/abs/2019A%26A...625A..64J/abstract
https://ui.adsabs.harvard.edu/abs/2013MNRAS.432..894J/abstract


1 Inferring fNL with field 
level inference
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The primordial physics
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Other generators in Scoccimarro et al. (2012)



The dynamical forward model

Different choice possible:

● Log transform

● nLPT (1LPT, 2LPT)

● Quantum LPT (Uhlemann et al. 2019)

● PM-COLA (Tassev et al. 2013)

● LPT+Emulator (BORG-EMU, Jamieson et al. 2023, Doeser et al. 2024)

● Zoom-PM  (Wempe et al. 2024 in prep)
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For this work, we use 2LPT



Choice of dark matter / galaxy relation (1)
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Dalal et al. (2008), Slosar et al. (2008)

Scale dependent bias

Reproduce phenomenology
Easy to implement
Relates to work on perturbation theory

Advantages:

Harder to work on real data
Limited spatial resolution of the model

Disadvantages:



Choice of dark matter / galaxy relation (2) : impact of choices of bΦ / b1 relation
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Scale dependent bias

Barreira (2022)fNL=50, b1=2.15



Choice of dark matter / galaxy relation (3): further improvements
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Lazeyras et al. (2021), Barreira et al. (2021)

Dalal et al. (2008), Slosar et al. (2008)

Scale dependent bias

Scale dependent bias (higher-order, Andrews et al in prep.)

PineTree model (Ding et al. in prep)

see later



Full data model

Andrews et al. (2023, 2024 in prep)
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Test setup (mock data): visibility mask & radial selection
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Self consistent mock data
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Inferred maps with mock setup
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Mock data
Initial posterior 
mean density

Posterior 
variance



Inferred fNL for reference run (mock-BOSS survey)
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"True" fNL

p=1 fixed,  k_max = 0.2 h/Mpc



Reported forecast for BOSS and BOSS-like data (p=1)

18Lazeyras et al. (2023)kmax = 0.05 h/Mpc



Reported constraints on fNL in BOSS data (p=1)
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Barreira (2022) Lazeyras et al. (2023)

kmax = 0.05 h/Mpc



Inferred fNL for reference run (Stage-IV survey)
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"True" fNL

p=1 fixed,  kmax = 0.2 h/Mpc



Forecast error to Stage-4 experiment
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Goal |fNL|<1

Resolution increase

Stage IV

Resolution increase



Relation to galaxy bias parameters
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Forecast error for Euclid-like experiment

23

Goal |fNL|<1

Resolution increase

Stage IV

Resolution increase

Andrews et al. (2024 in prep)

bϕ marginalized 
(prior p = 0.55 +/- 0.4, 
like Barreira 2022)

kmax = 0.05 - 0.1 h/Mpc + 
several forward model improvement w.r.t Andrews et al (2023)



2 Improving 
Galaxy/Dark matter 

connection
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Dark matter
over-density

halo catalog
prediction

From approximate 
simulators 
(e.g. 2LPT)

● Fast & Differentiable
● Stochastic 
● Explainable
● 17-32 parameters

Validation:
● 1pt
● 2pt
● field-level

Physics 
informed

ML

Ding et al (in prep), Pandey et al. (2024), Charnock et al 2020

PineTree & CHARM (ex-NPE = Neural Physical Engine) 
(S. Ding, S. Pandey, T. Charnock)
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http://www.iap.fr/recherche/groupes/groupes-3.php?nom=grandestruct&langue=en
https://openreview.net/pdf?id=dz3O7M1QzA
https://ui.adsabs.harvard.edu/abs/2020MNRAS.494...50C/abstract


Preliminary
PineTree: Physical and Interpretable NEtworks for TRacer Estimation/Emulation

26Ding et al. (in prep. 2024)



Training / validation procedure
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● Computed 40 N-body simulations 
○ 500 Mpc/h, 512³ particles
○  mp = 3 x 1012 M

☉

● Training on:
○ baseline: one simulation
○ extended: 10 for training and 30 for validation

● Ideally: no training at all!

Preliminary

Ding et al. (in prep. 2024)



First look: mass function and halo field correlation

28Ding et al. (in prep. 2024)

Preliminary



Second look: n(M), power spectra, bi-spectra

29Ding et al. (in prep. 2024)

Preliminary



Effect of resolution on power spectrum
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Preliminary
Increasing resolution

Ding et al. (in prep. 2024)

Increasing 
mass



Impact of kernel size on summaries / Information content
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Kernel 3x3x3

Kernel 5x5x5

Kernel 7x7x7

Relative mass 
function

Relative 
power-spectrum

Relative 
bi-spectrum



3 Summary & Outlook
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The road so far:

● BORG: an automated machine for cosmology
● Models:

○ Different dynamical models
○ Galaxy scale dependent bias
○ PineTree (demo-ed for mock halo catalog generation)

● Improvements through unlocking more modes
● Immediately achievable constraints with Stage IV: |fNL | < 5 

Field level inference for primordial non-gaussianities
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The road so far:
● BORG: an automated machine for cosmology
● Models:

○ Different dynamical models
○ Galaxy scale dependent bias
○ PineTree (demo-ed for mock halo catalog generation)

● Improvements through unlocking more modes
● Immediately achievable constraints with Stage IV: |fNL | < 5 

In preparation:
● Detailed Euclid forecasts 
● Test of inference on Quijote halo mocks
● PineTree

Future:
● Inference on large galaxy catalogs (notably Euclid)

Field level inference for primordial non-gaussianities
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