

m.rigault@ipnl.in2p3.fr





The new face of precision cosmology





# ZTF has impressive data





# ZTF SN la DR2 | ~2700 Cosmology SNe la



# **A&A Special Issue**

| First Author           | Short title           |
|------------------------|-----------------------|
| Rigault (a, this work) | DR2 overview          |
| Smith                  | DR2 data review       |
| Lacroix                | DR2 photometry        |
| ohansson               | DR2 spectra revie     |
| Rigault (b)            | Light-curve residu    |
| Kenworthy              | Light-curve model     |
| Amenouche              | DR2 sample simula     |
| Ginolin (a)            | Host, stretch & ste   |
| Ginolin (b)            | Host, color & bias o  |
| Popovic                | Host & color evolu    |
| Dhawan                 | SNe Ia siblings       |
| Ruppin                 | SNe Ia in cluster     |
| Aubert                 | SNe Ia in voids       |
| Carreres               | Velocity systemat     |
| Burgaz (a)             | SN Ia spectral diver  |
| Dimitriadis            | Thermonuclear SN di   |
| Terwel                 | Late-time CSM inter-  |
| Harvey                 | High-velocity feature |
| Deckers                | Secondary maxin       |
| Burgaz (b)             | SNe Ia in low-mass    |
| Senzel                 | Bulge vs. Disk SN     |







# The Lemaitre Diagram

ZTF DR2.5 | In prep

None of these SNe Ia have ever been used for cosmology





Number of Type Ia Supernovae

#### DR2 | Smith, Rigault et al.





Rigault et al. in prep





### ZTF Camera



5 GB

x1000 per night x2000 nights

ZTF images 10 PB











x1000 per night x2000 nights

> ZTF images 10 PB (raw!)



Image Calibration Merging ~1000x5G images (dask) 10<sup>4</sup> jobs of 10GB (~h)

We will eventually process all 10PB of raw data *dl from IPAC* | *no storing (eventually)* 



### Survey Stability Matrix 10<sup>7</sup> stars x 10<sup>5</sup> obs TB of shared RAM ~1 week a year



LSST is ZTFx10

### Star catalog

## Light Curve extraction

40 000 SNeIa x 50 starts x 1000 exposures CPU so far (jax?) | 10<sup>4</sup> 30GB jobs

> Starts from calibrated images Signal Extraction x observing condition deconvolution



Transient Sciences



10

# Is my analysis scaling to the full dataset?

# Is that possible to marginalise over **10\_000s of parameters**?

How to do accurate **simulations** to test my code ?

Is there a faster / more accurate solution for my problem ?

# Is my analysis scaling to the full dataset?

Is there a faster / more accurate solution for my problem ?

How to do accurate **simulations** to test my code ?

## Is that possible to marginalise over **10\_000s of parameters**?

What is possible now that was not 10 years ago and which might be standard 10 years from now





### **Pioneered it at CC-IN2P3** for **ZTF**

(image & spectra processing, Catalog management etc.)

**Quickly followed by LSST** 

Now natively accessible through notebook.ccin2p3.fr from time import sleep def slow\_computation(x): sleep(1) return x\*2

%%time  $y = slow_computation(4)$ 

CPU times: user 58.1 ms, sys: 20.2 ms, ms Wall time: 1.01 s

import numpy as np xx = np.arange(0, 10)

%%time yy = [slow\_computation(x\_) for x\_ in xx]

CPU times: user 705 ms, sys: 245 ms, to Wall time: 10 s

#### Massively parallelizable

Slow function

### On your laptop

| total: 78.4 | <pre>from dask.distributed import Client client = Client()</pre>                       |
|-------------|----------------------------------------------------------------------------------------|
|             | <pre>%%time delayed_yy = [dask.delayed(slow_computation)(x_</pre>                      |
|             | CPU times: user 603 μs, sys: 178 μs, total: 781<br>Wall time: 701 μs                   |
|             | <pre>%%time future_yy = client.compute(delayed_yy) yy = client.gather(future_yy)</pre> |
|             | CPU times: user 81.7 ms, sys: 26.1 ms, total: 1<br>Wall time: 1.02 s                   |





### **Pioneered it at CC-IN2P3** for **ZTF**

(image & spectra processing, Catalog management etc.)

**Quickly followed by LSST** 

Now natively accessible through notebook.ccin2p3.fr from time import sleep def slow\_computation(x): sleep(1) return x\*2

%%time  $y = slow_computation(4)$ 

CPU times: user 58.1 ms, sys: 20.2 ms, ms Wall time: 1.01 s

import numpy as np xx = np.arange(0, 10)

%%time yy = [slow\_computation(x\_) for x\_ in xx]

CPU times: user 705 ms, sys: 245 ms, tot Wall time: 10 s

#### Massively parallelizable

Slow function

#### At the CC-IN2P3

| ן                               | <pre>from dask4in2p3.dask4in2p3 import Dask4in2p3 dask4in2p3 = Dask4in2p3()</pre>      |
|---------------------------------|----------------------------------------------------------------------------------------|
|                                 | <pre>ncpu= 1_000 client = dask4in2p3.new_client(dask_worker_jobs=r</pre>               |
|                                 |                                                                                        |
| total: 78.4<br>]<br>tal: 950 ms | <pre>%%time delayed_yy = [dask.delayed(slow_computation)(x_</pre>                      |
|                                 | CPU times: user 603 μs, sys: 178 μs, total: 781<br>Wall time: 701 μs                   |
|                                 | <pre>%%time future_yy = client.compute(delayed_yy) yy = client.gather(future_yy)</pre> |
|                                 | CPU times: user 81.7 ms, sys: 26.1 ms, total: 1<br>Wall time: 1.02 s                   |
|                                 |                                                                                        |



15



#### optax

flax

blackjax

#### numpyro

jax\_cosmo

...

#### import numpy as np %%time %%time x = np.ones((10\_000, 10\_000)) $x^2 = x x$ y2 = y\*y CPU times: user 71.5 ms, sys: 183 ms, total: 255 ms Wall time: 255 ms Wall time: 2.87 ms On my laptop (M1) Automatic analytical gradient Whatever function 10 def test\_func(x): ..... ..... 0 base = jnp.cos(x\*5)\*\*2ref = jnp.sin(x+5)-10 return jnp.exp(base-ref) grad\_func = jax.vmap( jax.grad(test\_func) ) -20 0.5 0.0 It's gradient

### Same code runs on GPU & on CPU





## Looks like and feels like numpy & scipy



# Normalising flow



From C. Doux | SOS 2024

Draw from arbitrary complex distributions

# Simulation based inference



 $p( heta|\mathbf{x}) pprox \hat{r}(\mathbf{x}| heta) p( heta)$ 

# Build your likelihood with a simulator and a neural network





From Azadeh Moradinezhad | GDR CoPhy 2024

18

# Complex forward modelling

#### **Fully differentiable physics forward model** Ο



From Guilhem Lavaux | GDR CoPhy 2024

# Fit a line... requires to fit for all true parameters !



Mickael RIGAULT

```
: # The model
 def get_model(param):
     x_model = param.get("x", x)
     a, b = param["coefs"]
     y_model = x_model * a + b
      return x_model, y_model
 # The "total chi2"
 def get_chi2(param):
     x_model, y_model = get_model(param)
     chi2_x = jnp.sum((x_model - x)**2 / dx**2)
      chi2_y = jnp.sum((y_model - y)**2 / dy**2)
      return chi2_x + chi2_y
  # ========= #
  #
     fit
  # ========== #
  # guess
 params = {"x": x,
          "coefs": jnp.asarray([3., 0.], dtype="float32")
 # 1. Setup the opitmizer (optax)
 import optax
 optimizer = optax.adam(0.001)
 # Obtain the `opt_state` that contains statistics for the optimizer.
 opt_state = optimizer.init(params)
 # 2. the derivative function
 grad_func = jax.jit(jax.grad( get_chi2 )) # get the derivative
 # 3. the gradient descent
  losses = []
 niter = 5_{000}
 for i in range(niter):
      current_grads = grad_func(params) # current gradient
      updates, opt_state = optimizer.update(current_grads, opt_state) # update
      params = optax.apply_updates(params, updates) # new params
     losses.append( get_chi2(params) ) # store the loss function
 # 4. the result
 print(params["coefs"])
  [4.4068894 1.3669752]
```



# Organise a task-force

What is possible now that was not 10 years ago and which might be standard 10 years from now

Python (rust?) oriented | for physicists packages, methods and statistics

Survey current progress

Provide guidance to others



### Join forces for shared projects

