Strong Mixing At the Cosmological Collider

Quantum Particle Production in cosmological data

Inflation As Origine of Structures

Inflation As Origine of Structures

Inflationary physics left imprints in cosmological data.

Energy Scales

• Inflationary physics = Very High energy scales.

- **PLANCK** constraints: $H \lesssim 10^{14} \text{GeV}$
- Energy Conservation: we cannot produce on-shell particles heavier than 10⁴GeV at the LHC.
- High-energy theories: often rely on the existence of very massive particles.

Idea: Use Inflation as a Cosmological Collider

How Do we detect new Particles?

• Breit-Wigner Resonance: mass/lifetime of exchanged particles.

Idea: Build an equivalent for inflation !

Observable: Bispectrum

- Simplest non-gaussian signal.
- Homogeneity of space imposes triangular configurations.

Particle Physics In Inflation

• We can build a general theory of inflationary fluctuation:

Inflaton fluctuations = massless particle

- We can build the most generic interaction with some massive particle.
- Here is the list of ALL the possible interactions patterns:

Particle Physics In Inflation

• We can build a general theory of inflationary fluctuation:

Inflaton fluctuations = massless particle

- We can build the most generic interaction with some massive particle.
- Here is the list of ALL the possible interactions:

Exchange Process in Inflation

- End of Inflation = Initial Condition for Large Scale Structures.
- Different process in the bulk leads to different correlations.

Cosmological Collider Signal

• Exchange of massive particles leads to oscillating behavior in the squeezed limit:

$$B(k_1, k_2, k_3) \sim \left(\frac{k_3}{k_2}\right)^{1/2} e^{-\pi m/H} \cos(m/H \log(k_3/k_1) + \varphi)$$

Figure from Werth, Pinol, Renaux-Petel, <u>2312.06559</u> Using Cosmo*F*low[™]

- Oscillation in $\log(k_3/k_1)$.
- Frequency = mass of the new particle.
- Amplitude suppressed by the mass \implies Small signal

Cosmological Collider Signal

• Exchange of massive particles leads to oscillating behavior in the squeezed limit:

$$B(k_1, k_2, k_3) \sim \left(\frac{k_3}{k_2}\right)^{1/2} e^{-\pi m/H} \cos(m/H\log(k_3/k_1) + \varphi)$$

Figure from Werth, Pinol, Renaux-Petel, <u>2312.06559</u> Using $Cosmo \mathcal{F}low^{TM}$

• Physically: property of massive field propagation if $m \gg H$:

$$X'' - \frac{2}{\tau}X' + \left(k^2 + \frac{m^2}{\tau^2 H^2}\right)X = 0$$

$$\implies X \sim (k\tau)^{\frac{3}{2} \pm \Delta}, \Delta = \sqrt{\frac{9}{4} - \frac{m^2}{H^2}}$$

- Strong Mixing: —— gives a strong contribution.
- We cannot rely on the simpler diagrams!

• Lack of analytic understanding.

- Strong Mixing: gives a strong contribution.
- We cannot rely on the simpler diagrams!

- Strong Mixing: gives a strong contribution.
- We cannot rely on the simpler diagrams!

- Strong Mixing: gives a strong contribution.
- We cannot rely on the simpler diagrams!

What about observations?

- Amplitude of three-point function $B \sim f_{NL}$.
- Current constraints, PLANCK 2018: $f_{NL} \leq O(10)$

• Need for analytical templates for strong mixing.

Effective Field Theory

• At low energy, any two-field system can be approximated by a single-field effective theory.

- Very accurate for small momentum ratios, even at strong mixing.
- Neglects the propagation of the heavy field: misses the cosmological collider physics!

Effective Field Theory

• At low energy, any two-field system can be approximated by a single-field effective theory.

Figure from Arkani-Hamed and al. 1811.00024

A Flavor of the idea

• We use the EFT to parametrize a field redefinition.

- New Variables = what the EFT is missing
- Two-field description: we cannot miss the Cosmic Collider signal.

It works!

• **Power Spectrum** in the new massless field *X*1:

• The effect of the strong mixing is included in the EFT description: its impact on the new variables is weak!

Consequence

• We can apply the standard computation technics.

• Generic extension of the EFT techniques.

Conclusion

- Particles of mass $m \gg E_{LHC}$ can be produced on-shell in inflation.
- Exchange of massive particles leave distinctive imprints in nongaussianities: Cosmological Collider Signal.

- **Strong Mixing** leads to a larger signal which can be understood by extending EFT techniques.
- Very promising way of probing high-energy physics!