

2.1% measurement of the Baryon Acoustic Oscillation scale using the Dark Energy Survey final dataset

Juan Mena-Fernández¹

On behalf of the LSS working group of the DES collaboration In particular, special thanks to S. Avila, A. Porredon, K. C. Chan, H. Camacho, M. Rodríguez-Monroy, I. Ferrero.

¹Laboratoire de Physique Subatomique et de Cosmologie (LPSC)

Wednesday 22nd May, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

The Dark Energy Survey ○○○			
Content			

- 2 Baryon acoustic oscillations
- 3 The Y6 BAO sample

4 Methodology

6 Conclusions

The Dark Energy Survey			
The Dark E	nergy Survey		

The Dark Energy Survey (DES)

- is a visible and near-infrared photometric galaxy survey.
- has imaged about $5,000 \text{ deg}^2$ of the southern sky in a 6-year survey.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

DES relies on 4 dark energy probes:

- the number of clusters as a function of redshift (CL).
- the weak lensing effect in the distribution of galaxies (WL).
- the Hubble diagram of type la supernovae (SN).
- the baryon acoustic oscillation measurement (BAO).

The Dark Energy Survey	Baryon acoustic oscillations	The Y6 BAO sample 000	Methodology 0000	Results 0000000	Conclusions 000
The Dark E	Energy Survey				

Periods DES data:

Name	Period	Area (deg^2)	Objects (millions)
SV	Nov. 2012 - Feb. 2013	250	25
Y1	Aug. 2013 - Feb. 2014	1,800	137
Y3	Aug. 2013 - Feb. 2016	5,000	399
Y6	Aug. 2013 - Jan. 2019	5,000	691

Here, we present the measurement of the BAO using the Y6 data.

This presentation is based on two papers (both accepted for publication in PRD):

• BAO measurement (Y6): DES collaboration (2024) - arXiv:2402.10696.

・ロト ・ 日本 ・ 日本 ・ 日本 ・ クタマ

• BAO sample (Y6): Mena-Fernández et al. (2024) - arXiv:2402.10697.

	Baryon acoustic oscillations		
Content			

3 The Y6 BAO sample

4 Methodology

6 Conclusions

うちん 正明 スポッスポット 御マン

000	000	000	0000	0000000	000
Mhat ara h	anyon acquistic	accillation	-7		

What are baryon acoustic oscillations?

Baryon acoustic oscillations (BAO) are fluctuations in the density of the baryonic matter of the Universe caused by acoustic density waves in the primordial plasma of the early Universe.

The BAO provides a "standard ruler" given by the sound horizon scale at recombination,

$$r_d \equiv r_s(z_d) = \int_{z_d}^\infty rac{c_s(z)}{H(z)} dz pprox 100 \; \mathrm{Mpc}/h.$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ヨ ・ つ へ つ

It gives us information about

- H(z), if measured along the line of sight.
- $D_M(z)$, if measured across the line of sight.

The Dark Energy Survey

Baryon acoustic oscillations

The Y6 BAO sample

Methodology

Results 0000000

How do we measure the BAO signal in DES?

The BAO appears as a **peak in the 2-point correlation function** of galaxy positions. In photometric surveys such as DES:

- we have low z accuracy, but a large number of galaxies.
- we use angular estimators to measure the clustering signal.

Here, we measure the BAO using

- the angular correlation function (ACF) or w(θ).
- the angular power spectrum (APS) or C_{ℓ} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• the projected correlation function (PCF) or $\xi_p(s_{\perp})$.

We, then, combine the three (AVG).

	The Y6 BAO sample		
Content			

- 1 The Dark Energy Survey

2 Baryon acoustic oscillations

The Y6 BAO sample

4 Methodology

6 Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

		The Y6 BAO sample ○○○		
The DES Y6	5 BAO sample			

The DES Y6 BAO sample

- is a red galaxy sample selected using the griz bands and a photo-z estimate.
- has a good compromise between **photo**-*z* accuracy and number density. Selection cuts:

$$\begin{array}{ll} 1.7 < i-z+2(r-i) & (\mbox{color selection}), \\ 17.5 < i < 19.64+2.894 z_{\rm ph} & (\mbox{flux selection}), \\ i < 22.5 & (i-\mbox{mag limit}), \\ 0.6 < z_{\rm ph} < 1.2 & (\mbox{photo-z range}). \end{array}$$

- It is divided in **6 redshift bins** with $\Delta z_{\rm ph} = 0.1$.
- The effective redshift of the sample is $z_{\rm eff}=0.85$.
- It has a total of ~16 million galaxies over ~4,300 deg².

			The Y6 BAO sample		
Redshift calibration	Redshift ca	libration			

We use three different methods to estimate the true redshift distributions:

- DNF (Directional Neighborhood Fitting) De Vicente et al. (2016)
- Direct calibration with VIPERS z_{spec} (16 deg² overlap; complete at z > 0.6, i < 22.5) Scodeggio et al. (2018)
- Clustering redshifts (WZ) with SDSS galaxies Cawthon et al. (2022)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Dark Energy Survey	Baryon acoustic oscillations 000	The Y6 BAO sample 000	Methodology	Results 0000000	Conclusions 000
Content					

- 1 The Dark Energy Survey
- 2 Baryon acoustic oscillations
- 3 The Y6 BAO sample
- 4 Methodology

6 Conclusions

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 のへぐ

		Methodology ○●○○	
Methodolog	у		

1. Simulations

We created a set of **1,952 mock catalogs** of the BAO sample, based on **ICE-COLA fast simulations**, which reproduce with high accuracy the main properties of the data:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

- Sample observational volume.
- Abundance of galaxies, redshift distributions and photo-z errors.
- Clustering as a function of redshift.

Mocks are key to

- validate the modeling.
- run our pre-unblinding tests.
- quantify how likely some features we find in the data are.

The Dark Energy Survey	Baryon acoustic oscillations 000	The Y6 BAO sample	Methodology	Results 0000000	Conclusions 000
Methodolog	şy				

2. The BAO fit

• We use a template-based method:

$$M(x) = BT_{BAO,\alpha}(x') + A(x).$$

• The position of the BAO feature is given in terms of the **BAO-scaling parameter** *α*,

$$\alpha(z_{\text{eff}}) = \frac{D_M(z_{\text{eff}})}{r_d} \left[\frac{D_M^{\text{ref}}(z_{\text{eff}})}{r_d^{\text{ref}}}\right]^{-1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

- We use Planck collaboration (2018) results as our reference cosmology, for which $D_M(z_{\rm eff}=0.85)/r_d=20.39.$
- The fiducial result is the combination of our three estimators:

 $\alpha_{\rm AVG} = w_{\rm ACF} \alpha_{\rm ACF} + w_{\rm APS} \alpha_{\rm APS} + w_{\rm PCF} \alpha_{\rm PCF}.$

		Methodology	
Methodolog	у		

3. Pre-unblinding tests

The analysis and most of the paper writing were performed **blind**. Some of the pre-unblinding tests are:

- Do we have a BAO detection
 - in the combined fit? Yes
 - in each redshift bin? No: non-detection in the first bin (but this is consistent with ${\sim}20\%$ of the mocks)
- Is our measurement robust to
 - removing redshift bins? Yes
 - changing analysis choices? Yes
- Are our three estimators compatible (ACF, APS and PCF)? Yes
- And our consensus measurement (AVG)? Yes

All these tests pointed to the robustness of our measurement, so we unblinded.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Dark Energy Survey	Baryon acoustic oscillations	The Y6 BAO sample	Methodology	Results	Conclusions
000	000	000	0000		000
Content					

- 1 The Dark Energy Survey
- 2 Baryon acoustic oscillations
- 3 The Y6 BAO sample
- 4 Methodology

The Dark Energy Survey	Baryon acoustic oscillations	The Y6 BAO sample	Methodology	Results	Conclusions
000		000	0000	○●○○○○○	000
The BAO s	ignal				

Isolated BAO feature: data vs best fit.

Each plot shows the fit to the **6** redshift bins simultaneously, taking into account their covariances.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

			Results 0000000	
The BAO m	neasurement			

Our fiducial BAO-fit results are

- α (0.85) = 0.9517 ± 0.0227 (ACF),
- $\alpha(0.85) = 0.9617 \pm 0.0224$ (APS),
- $\alpha(0.85) = 0.9553 \pm 0.0201$ (PCF),

and our consensus combined measurement (AVG) is

$$\begin{aligned} \alpha(0.85) &= 0.9571 \pm 0.0196 \text{ [stat.]}, \\ &\pm 0.0041 \text{ [sys.]}, \\ \alpha(0.85) &= 0.9571 \pm 0.0201 \text{ [tot.]}. \end{aligned}$$

• Fractional error of 2.1%, the lowest for a photometric survey ever.

• Compatible with Planck at the level of 2.13σ .

We can also compute D_M/r_d from α ,

$$\frac{D_M(0.85)}{r_d} = 19.51 \pm 0.41.$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ヨ ・ つ へ つ

			Results	
The BAO	likelihood			

• Significance of the detection at the level of $\sim 3.5\sigma$ for the three estimators.

The Dark Energy Survey	Baryon acoustic oscillations	The Y6 BAO sample	Methodology	Results	Conclusions
000	000	000	0000	0000000	000

Robustness tests

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日■ のへで

Our measurement is robust against

- variations in the fiducial settings.
- different clustering estimators.
- data calibration (systematics).

 The Dark Energy Survey
 Baryon acoustic oscillations
 The Y6 BAO sample

 000
 000
 000

Methodology

Results 0

Conclusions 000

The angular BAO distance ladder at the end of Stage III

Our fiducial BAO distance measurement is

$$\alpha(z=0.85)=0.957\pm0.020.$$

- Competitive with Stage-III spectroscopic surveys.
- Most precise measurement at z > 0.75 at the end of Stage III.

The angular BAO distance ladder including DESI2024

Our fiducial BAO distance measurement is

$$\alpha(z=0.85)=0.957\pm0.020.$$

◆□ > ◆□ > ◆豆 > ◆豆 > 三回 のへで

The Dark Energy Survey	Baryon acoustic oscillations	The Y6 BAO sample	Methodology	Results	Conclusions
000	000	000	0000	0000000	
Content					

- 1 The Dark Energy Survey
- 2 Baryon acoustic oscillations
- 3 The Y6 BAO sample
- 4 Methodology

The Dark Energy Survey	Baryon acoustic oscillations	The Y6 BAO sample	Methodology	Results	Conclusions
000	000	000	0000	0000000	○○○
Conclusions					

• The fiducial comoving angular diameter distance measurement for the DES Y6 BAO analysis is

$$\frac{D_M(z=0.85)}{r_d} = 19.51 \pm 0.41.$$

In terms of α ,

$$\alpha(z = 0.85) = 0.957 \pm 0.020.$$

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

This measurement

- represents a fractional error of ~ 2.1%.
- is the most precise from a photometric redshift survey up to date.
- is compatible with Planck at the level of 2.13σ .
- is robust against observational systematics and modeling choices.
- It helps to construct the most up-to-date angular BAO distance ladder.

		Conclusions

Thank You!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国■ 釣۹0

Backup slides

Color cuts

Redshift calibration

bin	method	fid.	DNF $z_{ m mc}$	VIPERS	WZ
1 1 1	ACF APS PCF	$\begin{array}{c} 1.0001 \pm 0.0548 \\ 1.0000 \pm 0.0617 \\ 0.9998 \pm 0.0446 \end{array}$	$\begin{array}{c} 0.9899 \pm 0.0550 \\ 0.9899 \pm 0.0612 \\ 0.9922 \pm 0.0458 \end{array}$	$\begin{array}{c} 0.9931 \pm 0.0530 \\ 0.9927 \pm 0.0610 \\ 0.9930 \pm 0.0426 \end{array}$	$\begin{array}{c} 1.0014 \pm 0.0548 \\ 1.0009 \pm 0.0623 \\ 0.9994 \pm 0.0440 \end{array}$
2 2 2	ACF APS PCF	$\begin{array}{c} 1.0001 \pm 0.0483 \\ 1.0000 \pm 0.0518 \\ 0.9998 \pm 0.0426 \end{array}$	$\begin{array}{c} 0.9921 \pm 0.0481 \\ 0.9920 \pm 0.0514 \\ 0.9938 \pm 0.0432 \end{array}$	$\begin{array}{c} 0.9950 \pm 0.0463 \\ 0.9945 \pm 0.0512 \\ 0.9954 \pm 0.0408 \end{array}$	$\begin{array}{c} 0.9987 \pm 0.0486 \\ 0.9987 \pm 0.0518 \\ 1.0002 \pm 0.0426 \end{array}$
3 3 3	ACF APS PCF	$\begin{array}{c} 1.0001 \pm 0.0420 \\ 1.0000 \pm 0.0438 \\ 0.9998 \pm 0.0412 \end{array}$	$\begin{array}{c} 0.9957 \pm 0.0422 \\ 0.9957 \pm 0.0438 \\ 0.9982 \pm 0.0418 \end{array}$	$\begin{array}{c} 0.9918 \pm 0.0410 \\ 0.9914 \pm 0.0435 \\ 0.9942 \pm 0.0392 \end{array}$	$\begin{array}{c} 0.9993 \pm 0.0417 \\ 0.9991 \pm 0.0440 \\ 0.9994 \pm 0.0406 \end{array}$
4 4 4	ACF APS PCF	$\begin{array}{c} 1.0001 \pm 0.0410 \\ 1.0000 \pm 0.0402 \\ 0.9998 \pm 0.0404 \end{array}$	$\begin{array}{c} 1.0019 \pm 0.0419 \\ 1.0017 \pm 0.0408 \\ 1.0026 \pm 0.0422 \end{array}$	$\begin{array}{c} 1.0112 \pm 0.0398 \\ 1.0106 \pm 0.0405 \\ 1.0082 \pm 0.0390 \end{array}$	$\begin{array}{c} 0.9983 \pm 0.0398 \\ 0.9981 \pm 0.0403 \\ 1.0010 \pm 0.0388 \end{array}$
5 5 5	ACF APS PCF	$\begin{array}{c} 1.0001 \pm 0.0472 \\ 1.0000 \pm 0.0401 \\ 0.9994 \pm 0.0446 \end{array}$	$\begin{array}{c} 1.0030 \pm 0.0494 \\ 1.0030 \pm 0.0409 \\ 1.0018 \pm 0.0509 \end{array}$	$\begin{array}{c} 0.9985 \pm 0.0452 \\ 0.9971 \pm 0.0402 \\ 1.0026 \pm 0.0434 \end{array}$	
6 6 6	ACF APS PCF	$\begin{array}{c} 1.0001 \pm 0.0683 \\ 1.0000 \pm 0.0458 \\ 0.9998 \pm 0.0831 \end{array}$	$\begin{array}{c} 1.0062 \pm 0.0741 \\ 1.0067 \pm 0.0475 \\ 1.0130 \pm 0.0941 \end{array}$	$\begin{array}{c} 1.0048 \pm 0.0699 \\ 1.0047 \pm 0.0466 \\ 1.0234 \pm 0.0773 \end{array}$	
Ali Ali Ali	ACF APS PCF	$\begin{array}{c} 1.0001 \pm 0.0201 \\ 1.0000 \pm 0.0190 \\ 0.9998 \pm 0.0202 \end{array}$	$\begin{array}{c} 0.9972 \pm 0.0206 \\ 0.9988 \pm 0.0194 \\ 0.9982 \pm 0.0214 \end{array}$	$\begin{array}{c} 0.9985 \pm 0.0195 \\ 0.9989 \pm 0.0192 \\ 1.0002 \pm 0.0196 \end{array}$	=
All	AVG	0.9998 ± 0.0193	0.9984 ± 0.0204	1.0001 ± 0.0189	

Fits to the mocks: ACF

case	$\langle \alpha \rangle$	$\sigma_{ m std}$	σ_{68}	$\langle \sigma_{lpha} \rangle$
<i>i</i> = 0	1.0039	0.0187	0.0183	0.0180
i = 0, 1	1.0051	0.0202	0.0200	0.0190
i = 0, 1, 2	1.0057	0.0201	0.0202	0.0187
i = -1, 0, 1, 2	1.0058	0.0202	0.0200	0.0188
Planck template $i = 0, 1$	0.9675	0.0197	0.0197	0.0205
Planck template $i = 0, 1, 2$	0.9680	0.0193	0.0191	0.0182
Planck template $i = -1, 0, 1, 2$	0.9680	0.0195	0.0193	0.0182
$\Delta heta = 0.05 \; deg$	1.0058	0.0202	0.0200	0.0188
$\Delta heta = 0.15 \deg$	1.0057	0.0202	0.0199	0.0188
$ heta_{\min} = 1 \deg$	1.0061	0.0203	0.0200	0.0189
Planck Cov. + Templ.	0.9686	0.0194	0.0191	0.0209
COLA cov	1.0063	0.0193	0.0187	0.0184

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

Fits to the mocks: combination

case	meth.	$\langle \alpha \rangle$	$\sigma_{ m std}$	σ_{68}	$\langle \sigma_{lpha} angle$	$mocks \in \langle \alpha \rangle \pm \langle \sigma_\alpha \rangle$
MICE	ACF	1.0057	0.0202	0.0202	0.0187	65.2%
	APS	1.0063	0.0216	0.0204	0.0178	62.3%
	PCF	1.0012	0.0187	0.0182	0.0189	69.6%
	AVG	1.0019	0.0185	0.0180	0.0181	68.6%
Planck	ACF	0.9680	0.0193	0.0191	0.0181	65.3%
	APS	0.9685	0.0225	0.0203	0.0187	64.5%
	PCF	0.9631	0.0180	0.0176	0.0182	69.5%
	AVG	0.9638	0.0180	0.0177	0.0175	67.6%

Pre-unblinding tests: detection

Bin	ACF	APS	PCF
All	99.95 % [Y]	99.49 % [Y]	100 % [Y]
1	90.32 % [N]	74.49 % [N]	95.39 % [N]
2	94.98 % [Y]	82.12 % [Y]	97.34 % [Y]
3	97.39 % [Y]	86.73 % [Y]	97.69 % [Y]
4	97.59 % [Y]	91.55 % [Y]	97.84 % [Y]
5	96.67 % [Y]	90.73 % [Y]	95.39 % [Y]
6	91.19 % [Y]	87.76 % [Y]	86.22 % [Y]
Non-detections			
0	72.90 %	41.80 %	73.77 %
1	22.85 %	36.42 %	22.69 %
2	3.84 %	16.03 %	3.23 %
3	0.31 %	4.82 %	0.26 %
4	0.10 %	0.92 %	0.05 %

Pre-unblinding tests: combination

$\Delta lpha imes 100$	Data	90%-mocks
ACF-APS	-1.00	[-1.36, 1.12]
ACF-PCF	-0.36	[-0.58, 1.51]
APS-PCF	0.64	[-1.04, 2.15]
ACF-{APS+PCF}	-0.48	[-0.52, 1.24]
APS-{ACF+PCF}	0.68	[-1.02, 2.02]
PCF-{ACF+APS}	0.10	[-1.58, 0.61]
AVG-ACF	0.54	[-1.34, 0.58]
AVG-APS	-0.45	[-1.78, 0.81]
AVG-PCF	0.19	[-0.23, 0.39]

Pre-unblinding tests: varying settings

Threshold	90 % 95 %		97 %		99 %		data			
(Fraction of mocks)	min	max	min	max	min	max	min	max	MICE	Planck
	$10^2(\alpha - \alpha_{\rm fiducial})$									
Bins 23456	-1.33	1.43	-1.79	1.86	-2.10	2.17	-2.44	2.76	0.75	1.15
Bins 13456	-1.39	1.63	-1.83	1.99	-2.03	2.30	-2.80	3.13	1.03	1.47
Bins 12456	-1.37	1.51	-1.71	2.00	-2.03	2.35	-2.52	3.23	-0.21	-0.39
Bins 12356	-1.45	1.27	-1.81	1.57	-2.19	1.88	-2.80	2.76	-0.66	-0.27
Bins 12346	-1.21	1.11	-1.51	1.41	-1.79	1.72	-2.48	2.02	0.37	0.30
Bins 12345	-0.86	0.76	-1.07	0.96	-1.30	1.15	-1.63	1.65	-0.68	-0.76
Bins 456	-2.85	3.73	-3.42	4.85	-3.86	5.54	-5.00	7.90	3.26	3.41
Bins 123	-3.30	2.65	-4.27	3.45	-5.04	4.26	-6.80	5.56	-1.55	-1.58
Bins 1234	-1.83	1.67	-2.25	2.13	-2.55	2.35	-3.67	3.22	-0.39	-0.70
Template Cosmo	-0.33	0.48	-0.40	0.60	-0.44	0.68	-0.55	0.89	×	0.17
Covariance	-0.46	0.42	-0.58	0.54	-0.68	0.64	-0.83	0.82	×	-0.42
$n(z) z_{mc} - fid$	-0.56	0.08	-0.60	0.14	-0.64	0.20	-0.72	0.31	×	-0.42
	$100 (\sigma - \sigma_{All Bins}) / \sigma_{All Bins}$									
Bins 23456	-2.47	25.15	-4.33	30.34	-6.09	35.42	-9.08	41.50	5.37	3.96
Bins 13456	-1.60	26.16	-3.55	31.21	-5.18	35.18	-8.95	45.61	18.05	14.54
Bins 12456	-2.00	26.22	-4.53	31.44	-5.84	36.80	-8.93	45.86	18.05	14.98
Bins 12356	-2.29	25.17	-4.09	30.79	-5.51	35.11	-9.35	41.35	8.29	4.41
Bins 12346	-1.39	19.89	-2.84	24.51	-4.07	27.92	-6.22	34.80	7.32	7.93
Bins 12345	-0.66	11.94	-1.45	14.87	-1.97	17.79	-3.56	22.50	0.49	-3.08
Bins 456	12.08	94.25	8.20	114.76	5.13	128.50	-1.76	166.46	66.34	57.71
Bins 123	10.14	80.86	5.92	95.62	3.02	109.42	-2.36	144.43	21.95	18.50
Bins 1234	1.37	35.50	-0.99	42.58	-1.84	45.70	-4.23	55.74	7.80	3.96

The BAO measurement in individual bins

- non-detection in the first bin $(0.6 < z_{\rm ph} < 0.7)$, as in Y1 and Y3.
- consistency between the different estimators.
- fluctuations across bins compatible with mock catalogs.

◆□ > ◆□ > ◆豆 > ◆豆 > 三回 のへで

A D > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0</p>

- Ross Cawthon, J Elvin-Poole, A Porredon, M Crocce, G Giannini, M Gatti, AJ Ross, ES Rykoff, A Carnero Rosell, J DeRose, et al. Dark Energy Survey Year 3 results: calibration of lens sample redshift distributions using clustering redshifts with BOSS/eBOSS. *Monthly Notices of the Royal Astronomical Society*, 513(4): 5517–5539, 2022.
- Juan De Vicente, Eusebio Sánchez, and Ignacio Sevilla-Noarbe. DNF-Galaxy photometric redshift by Directional Neighbourhood Fitting. *Monthly Notices of the Royal Astronomical Society*, 459(3):3078–3088, 2016.
- The DES collaboration. Dark Energy Survey: A 2.1% measurement of the angular Baryonic Acoustic Oscillation scale at redshift $z_{\rm eff}$ =0.85 from the final dataset, 2024.
- J. Mena-Fernández et al. Dark Energy Survey: Galaxy Sample for the Baryonic Acoustic Oscillation Measurement from the Final Dataset, 2024.
- The Planck collaboration. Planck 2018 results. VI. Cosmological parameters. *arXiv* preprint arXiv:1807.06209, 2018.
- MARCO Scodeggio, L Guzzo, BIANCA Garilli, BR Granett, M Bolzonella, S De La Torre, U Abbas, C Adami, S Arnouts, D Bottini, et al. The VIMOS Public Extragalactic Redshift Survey (VIPERS)-Full spectroscopic data and auxiliary information release (PDR-2). *Astronomy & Astrophysics*, 609:A84, 2018.