Impact of blending on weak lensing measurements with Rubin-LSST

GDR CoPhy, Mai 2024 Manon Ramel

Laboratoire de Physique Subatomique & Cosmologie Supervisors : Cyrille Doux, Marine Kuna

Scientific context Cosmology with galaxy clusters

Largest gravitationally bound structures in the Universe

- Size of 1 Mpc
- 50 to 1000 galaxies
- $M > 10^{13.5} M_{\odot}, z < 3$

Tracers of the matter over-densities

Abundance depends on cosmology

Studied through their counting per bins of mass and redshift

Mass is not an observable: indirect measurements through weak lensing

Weak gravitational lensing

Scientific context Cluster mass from lensing profile

- Excess surface mass density (in M_{\odot} . Mpc^{-2})

Vera C. Rubin - LSST

Vera C. Rubin Observatory • World's largest camera (3 billions pixels)

Legacy Survey of Space and Time - LSST and deep sky survey over 10 years • First scientific data in 2025

Scientific context Blending

Superposition of galaxies due to:

- The depth of observation
- The survey's resolution

Superposition of galaxies due to:

- The depth of observation
- The survey's resolution

Superposition of galaxies due to:

- The depth of observation
- The survey's resolution

of galaxies due to:

- The depth of observation
- The survey's

Roman Simulated image

of galaxies due to:

- The depth of observation
- The survey's

Blend !

2022, Troxel et al.

Scientific context Blending

Recognized blends Hubble/ACS

Less resolution

Unrecognized blends Subaru/HSC

* 2016, Dawson et al. 2022, Troxel et al.

LSST deblender: **SCARLET**

LSST ~ 60% of blends

- Recognized blends: ~40 %
- Unrecognized blends: ~14 20 %*

DES ~ 10% of blends

Scientific context Blending around galaxy clusters

Galaxy clusters = high density regions = **blending**

FIELD

CLUSTER

Blending impacts:

- The **detection** of galaxies
- The measurement of **shapes**
- The measurement of **redshifts**

WL profiles ↔ galaxy cluster masses ↔ cosmology

Detection of blends in DESC simulations

Detection of blends in DESC simulations Rubin-LSST is being constructed... Simulated catalogs

Outer Rim 2019, Heitmann et al.

<u>cosmoDC2</u> = truth catalog

- 440 deg² catalog from a N-body simulation
- Reference for galaxies and dark matter haloes
- True shapes, magnitudes, positions...

DESC simulated image

DC2object = object catalog

- Simulated images from cosmoDC2
- Detection of **objects**
- Measured shapes, magnitudes, positions

Identification of blends through catalog matching

dec

Detection of blends in DESC simulations Matching procedure: Friends-of-Friends

https://github.com/yymao/FoFCatalogMatching

Detection of blends in DESC simulations Matching procedure: friendly

https://github.com/LSSTDESC/friendly https://github.com/LSSTDESC/Cluster_Blending

Detection of blends in DESC simulations Matching procedure: friendly

Dec

https://github.com/LSSTDESC/friendly https://github.com/LSSTDESC/Cluster_Blending

RA

Detection of blends in DESC simulations Relative probabilities of matching galaxies \rightarrow See blending as a matching **ambiguity**...

1. For each object:

Matching probability with one galaxy of the group

 $p \propto \text{overlap}$ weighted by the difference in magnitudes

2. Vector of matching probabilities

3. Blending entropy:

$$S_{b} = -\sum_{i} p_{i} \log p_{i}$$

= score for each object

*
$$S_b = 0$$
 for 1-1

Detection of blends in DESC simulations Blending entropy of blended systems

Impact of blending on weak lensing profiles

Blending and weak lensing Impact of blending on $\Delta\Sigma$ profiles

Objective: study the impact of bad blends on $\Delta\Sigma$ profiles

DESC tool https://github.com/LSSTDESC/CLMM

Conclusions

- 1. Development of friendly, new DESC matching algorithm
 - Matching probabilities to characterize blending
 - Efficiency of blending entropy in separating highly vs. well-matched systems

Impact of blending on cluster lensing profiles

- Profiles biased low due to blending
- Partly recovered by removing identified blends

Need to propagate this study to cosmological parameters 3.

Thank you for your attention!

