Dark matter halo properties of intermediate-z star-forming galaxies

B. Ciocan, N. Bouché, R. Bacon, J. Fensch, J. Blaizot, T. Buchert, A. Jeanneau, L. Michel-Dansac, Richard, J. Rosdahl, T. Contini, W. Mercier, B. Épinat, E. Emstellen, D. Krajnovic

HUBBLE ULTRA DEEP FIELD

CENTRE DE RECHERCHE ASTROPHYSIQUE DE LYON

Evidence for dark matter from rotation curves of disk galaxies (van de Hulst+1957)

the matter distribution in disk galaxies

Rotation curves represent fundamental tools to study

⇒∧CDM successful in predicting and explaining the large-scale structures of the Universe and their evolution with cosmic time

➡Large scales: ACDM is a big success **ACDM**

Large scale (>>1 Mpc):

B. Ciocan, GDR CoPhy Episode 2, 23.05.2024

Small scales: retain information about possible deviations from

Sales+2022)

ACDM Tensions with Dwarf Galaxies

\Rightarrow <u>On small scales</u>: Small-scale problems of Λ CDM (e.g. Bullock+2017,

Navarro+1997)

Motivation: Solutions to core-cusp problem

In ΛCDM: baryonic processes (stellar) feedback, central stellar bar, clumps infalling due to dynamical friction, AGN feedback)

Rapid potential fluctuations (hard to observe)

stellar feedback scenario: core formation most efficient for 9<log(M*/M_o)<10 (Di Cintio+ 14; Lazar et al. 2020; Tollet et al. 2016)

alternative models of DM (self-interacting DM - Spergel +2000; axion-like fuzzy DM -Hu+2000)

State-of-the-art: Dark matter halo properties of local star-forming galaxies

➡ SPARC sample (Lelli+2016, Li + 2019)

- ►7 halo profiles
- Navarro-Frenk-White always bad
- Investigate halo scaling relations

log(c)

log(M200)

log(M200)

State-of-the-art: Dark matter halo properties of local star-forming galaxies

log(c)

SPARC sample (Lelli+2016, Li + 2019)

- ►7 halo profiles
- Navarro-Frenk-White always bad
- Investigate halo scaling relations

State-of-the-art: Dark matter halo properties of intermediate-z star-forming galaxies

Genzel+ 2017,2020, Nestor Shachar+2023, Puglisi+2023

mainly probe high-M end

►use NFW

Investigate DM fractions

This project: Dark matter halo properties of intermediate-z starforming galaxies

 \Rightarrow We use the rotation curves of a large sample of galaxies with 0.2<z<1.5 and 7<log(M*/M \odot)<11 to study the properties of their dark matter halos using a 3D forward modelling approach with 6 different DM halo profiles

Bouche et al. 2022

Data

Methodology

3D disk-halo decomposition with Galpak3D (Bouche et al. 2015, 2022)

$$v_{\rm c}(r)^2 = v_{\rm DM}(r)^2 + v_{\star}(r)^2 + v_{\rm gas}(r)^2 + {\rm correc}$$

•Dark matter halo parametrised with 6 different density profiles: (1) generalised profile of DC14 (Di Cintio+2014)

- 13 19 parameters in our models
- Only use priors on inclination and M* (except for DC14 where no priors on M* are used)
- We optimise the parameters simultaneously with GALPAK3D using an MCMC fitting routine (pyMultiNest, Buchner+2014)

- •Galpak3D compares 3D parametric models directly to the 3D data, taking into account the LSF and PSF
 - ction for pressure support
 - - (2) NFW (Navarro, Frenk, White 1997)
 - (3) Dekel (Freundlich+ 2020)
 - (4) Burkert (Burkert 1995)
 - (5) coreNFW (Read+ 2016)
 - (6) Einasto (Navarro + 2004)

Validation of methodology with simulations Apply 3D disk-halo decomposition on mock data cubes

Results - Examples of rotation curves & dark matter density profiles

B. Ciocan, GDR CoPhy Episode 2, 23.05.2024

DM density profile ID MOSAIC 958

diversity of RCs similar to local universe

Bayesian Model Comparison

➡ compared to NFW, Burkert, Dekel, Einasto and coreNFW, DC14 performs as well or better in 85%, 66%, 86%, 74%, 88% of the sample, respectively 80

galaxies ⁰⁹

80

galaxies ⁰⁹

201

80

galaxies 09 09

201

80

[#] 20

Consistency checks of DC14

Kinematic-based M* agree to SED M*

 \Rightarrow Measured γ in accordance with DC14 expectations

Core/cusp formation:

120 100

- S/N 80 effective 60 40
- ➡ 66% of the sample has cored density profiles no correlation with star formation rates

20

Stellar Mass - Halo Mass relation:

1.2

1.0

Stellar mass-halo mass relation in 0.8 N agreement with the predictions from Behroozi+2019 and Girelli+2020

0.6

0.4

Halo scale radius - Halo Mass relation

in agreement with observations & simulations

Halo scale radius-density relation

of dark matter predicted by hierarchical clustering

➡Tentative evidence: Dark matter cores of z~0.85 SFGs are slightly smaller (~ 0.16 dex) and denser (~0.3 dex) than their local counterparts

core density - stellar

DM surface density stellar mass relation

B. Ciocan, GDR CoPhy Episode 2, 23.05.2024

Dark matter fractions

➡89% of the sample has dark matter fractions larger than 50% within Re

Conclusions

- the generalised halo profile of Di Cintio+14 fits the data best
- \Rightarrow 66% of the SFGs at z~0.85 have cored density profiles, with y<0.5
- no correlation between core/cusp formation and star formation rate
- \Rightarrow cores of z~0.85 SFGs are slightly smaller and denser than than at z=0
- ■89% of the sample has dark matter fractions larger than 50%

Future prospects

Perform disk-halo decomposition on intermediate-z galaxies using alternative models of DM (self-interacting -Spergel +2000; axion-like fuzzy DM -Hu+2000) as well as modified gravity models such as Cotton Gravity (Harada +2022)

