

Updated Constraints on Hubble Tension solutions

With recent SPT-3G and SH0ES data

Ali Rida Khalife arXiv:2312.09814 JCAP 04(2024)059

Collaborators: Mariam Bahrami, Sven Günther and Julien Lesgourgues from **RWTH Aachen** Silvia Galli and Karim Benabed from **IAP**

Thanks to the great support from the IAP CMB team:

Federica Guidi, Aristide Doussot, Eric Hivon, Etienne Camphuis, Lennart Balkenhol and Aline Vitrier

Ref: Hubble Tension: The Evidence of New Physics(2302.05709)

CMB with Planck

 $\begin{array}{l} \mbox{Balkenhol et al. (2021), Planck 2018+SPT+ACT: 67.49 \pm 0.5 \\ \mbox{Pogosian et al. (2020), eBOSS+Planck mH2: 69.6 \pm 1.8 \\ \mbox{Aghanim et al. (2020), Planck 2018: 67.27 \pm 0.60 \\ \mbox{Aghanim et al. (2020), Planck 2018+CMB lensing: 67.36 \pm 0.54 \\ \mbox{Ade et al. (2016), Planck 2015, H0 = 67.27 \pm 0.66 \\ \end{array}$

CMB without Planck

Dutcher et al. (2021), SPT: 68.8 ± 1.5 Aiola et al. (2020), ACT: 67.9 ± 1.5 Aiola et al. (2020), WMAP9+ACT: 67.9 ± 1.5 Aiola et al. (2020), WMAP9+ACT: 67.6 ± 1.1 Zhang, Huang (2019), WMAP9+BAO: $68.36^{+0.52}_{-0.52}$ Henning et al. (2018), SPT: 71.3 ± 2.1 Hinshaw et al. (2013), WMAP9: 70.0 ± 2.2

No CMB, with BBN

Zhang et al. (2021), BOSS correlation function+BAO+BBN: 68.19±0.99 Chen et al. (2021), P+BAO+BBN: 69.23±0.77 Philcox et al. (2021), P+Bispectrum+BAO+BBN: 68.31±0.83 D' Amico et al. (2020), BOSS DR12+BBN: 68.5 ± 2.2 Colas et al. (2020), BOSS DR12+BBN: 68.7 ± 1.5 Ivanov et al. (2020), BOSS+BBN: 67.9 ± 1.1 Alam et al. (2020), BOSS+BBN: 67.35 ± 0.97

CMB lensing ·

Baxter et al. (2020): 73.5 ± 5.3 Philcox et al. (2020), $P_I(k)$ +CMB lensing: $70.6^{+3}_{-5.0}$

> LSS t_{eq} standard ruler · Farren et al. (2021): 69.5+3.9 ·

Riess et al. (2022), R22: $73.0\frac{3}{4} \pm 1.04$ Camarena, Marra (2021): 74.30 ± 1.45 Riess et al. (2020), R20: 73.2 ± 1.3 Breuval et al. (2020): 72.8 ± 2.7 Riess et al. (2019), R19: 74.03 ± 1.42 Camarena, Marra (2019): 75.4 ± 1.7

SNIa-TRGB

Dhawan et al. (2022): 76.94 ± 6.4 Jones et al. (2022): 72.4 ± 3.3 Anand, Tully, Rizzi, Riess, Yuan (2021): 71.5 ± 1.8 Freedman (2021): 69.8 ± 1.7 Kim, Kang, Lee, Jang (2021): 69.5 ± 4.2 Soltis, Casertano, Riess (2020): 72.1 ± 2.0 Freedman et al. (2020): 69.6 ± 1.9 Reid, Pesce, Riess (2019), SH0ES: 71.1 ± 1.99 Yuan et al. (2019): 72.4 ± 2.0

> **SNIa-Miras** Huang et al. (2019): 73.3 ± 4.0

SBF

Blakeslee et al. (2021) IR–SBF w/ HST: 73.3 ± 2.5 Khetan et al. (2020) w/ LMC DEB: 71.1 ± 4.1 Cantiello et al. (2018): 71.9 ± 7.1

de Jaeger et al. (2022): 75.4+3.8

de Jaeger et al. (2020): 75.8+3-2

Masers · Pesce et al. (2020): 73.9 ± 3.0

Tully Fisher • Kourkchi et al. (2020): 76.0 ± 2.6 • Schombert, McGaugh, Lelli (2020): 75.1 ± 2.8 •

H₀ Olympics 2021

Model	$\Delta N_{ m param}$	M_B	Gaussian Tension	$Q_{ m DMAP}$ Tension		$\Delta \chi^2$	ΔAIC		Finalist
ACDM	0	-19.416 ± 0.012	4.4σ	4.5σ	X	0.00	0.00	X	X
$\Delta N_{ m ur}$	1	-19.395 ± 0.019	3.6σ	3.8σ	X	-6.10	-4.10	X	X
SIDR	1	-19.385 ± 0.024	3.2σ	3.3σ	X	-9.57	-7.57	\checkmark	V 🔘
mixed DR	2	-19.413 ± 0.036	3.3σ	3.4σ	X	-8.83	-4.83	X	X
DR-DM	2	-19.388 ± 0.026	3.2σ	3.1σ	X	-8.92	-4.92	X	X
$SI\nu + DR$	3	$-19.440\substack{+0.037\\-0.039}$	3.8σ	3.9σ	X	-4.98	1.02	X	X
Majoron	3	$-19.380\substack{+0.027\\-0.021}$	3.0σ	2.9σ	~	-15.49	-9.49	~	√ ②
primordial B	1	$-19.390\substack{+0.018\\-0.024}$	3.5σ	3.5σ	X	-11.42	-9.42	~	√ ③
varying m_e	1	-19.391 ± 0.034	2.9σ	2.9σ	~	-12.27	-10.27	~	V 😐
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.9σ	~	-17.26	-13.26	~	V 😐
EDE	3	$-19.390\substack{+0.016\\-0.035}$	3.6σ	1.6σ	~	-21.98	-15.98	~	✓ ②
NEDE	3	$-19.380\substack{+0.023\\-0.040}$	3.1σ	1.9σ	~	-18.93	-12.93	~	 ✓ ②
EMG	3	$-19.397\substack{+0.017\\-0.023}$	3.7σ	2.3σ	~	-18.56	-12.56	~	 ✓ ②
CPL	2	-19.400 ± 0.020	3.7σ	4.1σ	X	-4.94	-0.94	X	X
PEDE	0	-19.349 ± 0.013	2.7σ	2.8σ	~	2.24	2.24	X	X
GPEDE	1	-19.400 ± 0.022	3.6σ	4.6σ	X	-0.45	1.55	X	X
$\rm DM \rightarrow \rm DR{+}\rm WDM$	2	-19.420 ± 0.012	4.5σ	4.5σ	X	-0.19	3.81	X	X
$\rm DM \rightarrow \rm DR$	2	-19.410 ± 0.011	4.3σ	4.5σ	X	-0.53	3.47	X	X

Ref: <u>2107.10291</u>

Goal of the Project

- Evaluate the potential of Cosmological models to solve the Hubble Tension.
- Include primary CMB data from <u>SPT-3G 2018</u>, in combination with other data sets.
- Compare to recent <u>SHOES analysis</u>:

H₀= 73.29±0.90 km/s/Mpc (Murakami *et al., 2023;* <u>2306.00070</u>).

- Study 5 classical ACDM extensions + 3 Elaborate Models (+extensions).
- Assess these models with new Tension metrics.
- Update H₀ Olympics paper (Schöneberg *et al.,* 2021; <u>2107.1029</u>).

How to Solve the Tension

- Solutions to the Hubble Tension include changing the Physics pre-recombination or in the late universe
- Note: 100xθ = 1.04075 ± 0.00028 (Balkenhol *et al.*,2022; <u>2212.05642</u>)

7

Data Sets

Data Sets

Extending ACDM with 3 degenerate **massive neutrinos** (Σm_v) and: Small scale CMB+BAO

• Chevallier-Polarski-Linder (CPL) Dark Energy ($\omega(a) = \omega_0 + \omega_a(1-a)$); $a \equiv \text{scale factor}$

- Spatial Curvature ($\Omega_{\rm K}$)
- Free streaming Dark Radiation (*N*_{eff})
- Self Interacting Dark Radiation (N_{SIDR})

$$\theta_{s} = \frac{r_{s}}{D_{A}} = \frac{\int_{z_{*}}^{\infty} \left[3\left(1 + \frac{3\rho_{b}}{4\rho_{\gamma}}\right) \right]^{-1/2} \left[\frac{8\pi G}{3} \Sigma_{i} \rho_{i} \right]^{-1/2} dz}{H_{0}^{-1} \sin_{K} \left[\int_{0}^{z_{*}} \left(\Sigma_{i} \Omega_{i}(z) \right)^{-1/2} dz \right]}$$

Extending Λ CDM with 3 degenerate **massive neutrinos** (Σm_{μ}) and:

- Chevallier-Polarski-Linder (CPL) Dark Energy ($\omega(a) = \omega_0 + \omega_a(1-a)$); $a \equiv$ scale factor Large scale CMB + SN la
- Spatial Curvature (Ω_{k})
- Free streaming Dark Radiation (N_{off})
- Self Interacting Dark Radiation (N_{SIDR})

$$\theta_s = \frac{r_s}{D_A} = \frac{\int_{z_*}^{\infty} \left[3\left(1 + \frac{3\rho_b}{4\rho_\gamma}\right)\right]^{-1/2} \left[\frac{8\pi G}{3}\Sigma_i\rho_i\right]^{-1/2} dz}{H_0^{-1}\sin_K \left[\int_0^{z_*} \left(\Sigma_i\Omega_i(z)\right)^{-1/2} dz\right]}$$

Extending Λ CDM with 3 degenerate **massive neutrinos** (Σm_{ν}) and:

• Chevallier-Polarski-Linder (CPL) Dark Energy ($\omega(a) = \omega_0 + \omega_a(1-a)$); $a \equiv$ scale factor

- Free streaming Dark Radiation (N_{eff})
- Self Interacting Dark Radiation (N_{SIDR})

$$\theta_{s} = \frac{r_{s}}{D_{A}} = \frac{\int_{z_{*}}^{\infty} \left[3\left(1 + \frac{3\rho_{b}}{4\rho_{\gamma}}\right) \right]^{-1/2} \left[\frac{8\pi G}{3} \Sigma_{i} \rho_{i} \right]^{-1/2} dz}{H_{0}^{-1} \sin_{K} \left[\int_{0}^{z_{*}} \left(\Sigma_{i} \Omega_{i}(z) \right)^{-1/2} dz \right]}$$

Extending Λ CDM with 3 degenerate **massive neutrinos** (Σm_{μ}) and:

- Chevallier-Polarski-Linder (CPL) Dark Energy ($\omega(a) = \omega_0 + \omega_a(1-a)$); $a \equiv scale factor$ Spatial Curvature (Ω_K) $\theta_s = \frac{r_s}{D_A} = \frac{\int_{z_*}^{\infty} \left[3\left(1 + \frac{3\rho_b}{4\rho_\gamma}\right)\right]^{-1/2} \left[\frac{8\pi G}{3}\Sigma_i\rho_i\right]^{-1/2} dz}{H_0^{-1}\sin_K\left[\int_0^{z_*} \left(\Sigma_i\Omega_i(z)\right)^{-1/2} dz\right]}$ Free streaming Dark Radiation (N_{eff}) Self Interacting Dark Radiation (N_{SIDR})

Extending Λ CDM with 3 degenerate **massive neutrinos** (Σm_{ν}) and:

• Chevallier-Polarski-Linder (CPL) Dark Energy ($\omega(a) = \omega_0 + \omega_a(1-a)$); $a \equiv$ scale factor

• Spatial Curvature (Ω_{κ})

Model	$\Delta N_{\rm param}$	M_B	Gaussian tension	Q _{DMAP} tension		$\Delta \chi^2$	⊿AIC	Finalist
SIDR	1	-19.385 ± 0.024	3.2σ	3.3σ	X	-9.57	-7.57	

• Self Interacting Dark Radiation (N_{SIDR})

(Schöneberg et al., 2021; 2107.1029)

- Varying electron mass: (Hart & Chulba, 2017; <u>1705.03925</u>)
 - Motivated by higher dimensional theories, e.g. string theory
 - Changes the time (redshift) of hydrogen recombination.
 - Previously found to be an excellent reducer of the tension.
 - Must include BAO with large-scale CMB data.

$$\theta_s = \frac{r_s}{D_A} = \frac{\int_{z_*}^{\infty} \left[3\left(1 + \frac{3\rho_b}{4\rho_\gamma}\right) \right]^{-1/2} \left[\frac{8\pi G}{3} \Sigma_i \rho_i \right]^{-1/2} dz}{H_0^{-1} \sin_K \left[\int_0^{z_*} \left(\Sigma_i \Omega_i(z) \right)^{-1/2} dz \right]}$$

- Varying electron mass: (Hart & Chulba, 2017; <u>1705.03925</u>)
 - Motivated by higher dimensional theories, e.g. string theory
 - Changes the time (redshift) of hydrogen recombination.
 - Previously found to be an excellent reducer of the tension.
 - Must include BAO with large-scale CMB data.

Model	$\Delta N_{\rm param}$	M_B	Gaussian tension	Q_{DMAP} tension		$\Delta \chi^2$	⊿AIC		Finalist	
varying m _e	1	-19.391 ± 0.034	2.9σ	2.9σ	\checkmark	-12.27	-10.27	\checkmark		

(Schöneberg et al., 2021; 2107.1029)

- Varying electron mass: (Hart & Chulba, 2017; <u>1705.03925</u>)
 - + Σm_v : First to constrain this combination.

• Varying electron mass: (Hart & Chulba, 2017; <u>1705.03925</u>)

• + Σm_v

- +Ω_K
 - Changing z_* changes D_A . Need to compensate with late universe parameter.
 - Intermediate scale polarization data from SPT-3G was crucial.

$$\theta_s = \frac{r_s}{D_A} = \frac{\int_{z_*}^{\infty} \left[3\left(1 + \frac{3\rho_b}{4\rho_\gamma}\right)\right]^{-1/2} \left[\frac{8\pi G}{3}\Sigma_i\rho_i\right]^{-1/2} dz}{H_0^{-1}\sin_K \left[\int_0^{z_*} \left(\Sigma_i\Omega_i(z)\right)^{-1/2} dz\right]}$$

• Varying electron mass: (Hart & Chulba, 2017; <u>1705.03925</u>)

- +Ω_K
 - Intermediate scale polarization data from SPT-3G was crucial.
 - Even More promising than its ancestor.

Model	$\Delta N_{\rm param}$	M_B	Gaussian tension	Q _{DMAP} tension		$\Delta \chi^2$	⊿AIC		Finalist	
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.9σ	\checkmark	-17.26	-13.26	~		

(Schöneberg et al., 2021; 2107.1029)

- Varying electron mass: (Hart & Chulba, 2017; <u>1705.03925</u>)
 - +Σm_ν
 - +Ω_K
 - + $\Sigma m_v + \Omega_K$

- Varying electron mass: (Hart & Chulba, 2017; <u>1705.03925</u>)
 - +*Σm_ν*
 - +Ω_K
 - +*Σm_ν*+Ω_κ
- Early Dark Energy: (Poulin *et al.*, 2023; <u>2302.09032</u>)
 - Motivated by higher dimensional theories.
 - Scalar field reduces sound horizon around Matter-radiation equality.

$$\theta_s = \frac{r_s}{D_A} = \frac{\int_{z_*}^{\infty} \left[3\left(1 + \frac{3\rho_b}{4\rho_\gamma}\right) \right]^{-1/2} \left[\frac{8\pi G}{3}\Sigma_i \rho_i\right]^{-1/2} dz}{H_0^{-1} \sin_K \left[\int_0^{z_*} \left(\Sigma_i \Omega_i(z)\right)^{-1/2} dz \right]} 22$$

- Varying electron mass: (Hart & Chulba, 2017; <u>1705.03925</u>)
 - +Σ*m*_v
 - +Ω_K
 - +*Σm_ν* +Ω_κ
- Early Dark Energy: (Poulin et al., 2023; 2302.09032)
 - Motivated by higher dimensional theories.
 - Scalar field reduces sound horizon around Matter-radiation equality.

Model	$\Delta N_{\rm param}$	M_B	Gaussian tension	Q _{DMAP} tension	$\Delta \chi^2$	⊿AIC	Finalist		
EDE	3	$-19.390\substack{+0.016\\-0.035}$	3.6σ	1.6σ	√ −21.98	-15.98			
			(Schöneberg <i>et al.</i> , 2021; 2107,1029)						

- Varying electron mass: (Hart & Chulba, 2017; <u>1705.03925</u>)
 - +Σm_v
 - +Ω_K
 - +*Σm_ν* +Ω_κ
- Early Dark Energy: (Poulin *et al.*, 2023; <u>2302.09032</u>)
- The Majoron: (Escudero & Witte, 2021; <u>2103.03249</u>)
 - Breaking symmetry in the early Universe produces interacting Dark Radiation.

$$\theta_{s} = \frac{r_{s}}{D_{A}} = \frac{\int_{z_{*}}^{\infty} \left[3 \left(1 + \frac{3\rho_{b}}{4\rho_{\gamma}} \right) \right]^{-1/2} \left[\frac{8\pi G}{3} \Sigma_{i} \rho_{i} \right]^{-1/2} dz}{H_{0}^{-1} \sin_{K} \left[\int_{0}^{z_{*}} \left(\Sigma_{i} \Omega_{i}(z) \right)^{-1/2} dz \right]}$$

24

- Varying electron mass: (Hart & Chulba, 2017; <u>1705.03925</u>)
 - +*Σm_v*
 - +Ω_K
 - +*Σm_ν* +Ω_κ
- Early Dark Energy: (Poulin *et al.*, 2023; <u>2302.09032</u>)
- The Majoron: (Escudero & Witte, 2021; <u>2103.03249</u>)
 - Breaking symmetry in the early Universe produces interacting Dark Radiation.

Model	△N _{param}	M_B	Gaussian tension	Q_{DMAP} tension		$\Delta \chi^2$	⊿AIC		Finalist	
Majoron*	3	$-19.380\substack{+0.027\\-0.021}$	3.0σ	2.9σ	~	-10.99	-4.99	X		

(Schöneberg et al., 2021; 2107.1029)

Tension Metrics

- Marginalised Posterior Compatibility Level (Q_{MPCL}):
 - Generalises Gaussian Tension metric to non-Gaussian posteriors of H_0 .
 - Bayesian.
- Difference of the Maximum A Posteriori (Q_{DMAP}):
 - \circ Comparison of best-fit χ^2 for a model and data set, w/ and w/o SH0ES.
 - Frequentist.

$$Q_{\text{DMAP, model}} \equiv \sqrt{\chi^2_{\text{min, model, } \mathcal{D} + SH0ES} - \chi^2_{\text{min, model, } \mathcal{D}}}$$

 $+2(N_{\text{model}}-N_{\text{ACDM}})$.

- Akaike Information Criterion (ΔAIC):
 - \circ Comparison of best-fit χ^2 for a model, given a data set that includes SH0ES, with that of ACDM
 - Penalty for models with additional parameters. $\Delta AIC_{model} = \chi^2_{min, model, D+SH0ES} \chi^2_{min, \Lambda CDM, D+SH0ES}$
- *AAIC without SH0ES*

 $n = \frac{x_2 - x_1}{\sqrt{\sigma_{x_1}^2 + \sigma_{x_2}^2}}$

Numerical Tools

• Theory Codes: <u>CLASS</u>, <u>AxiCLASS</u> and <u>CAMB</u>

Monte Carlo Sampler: <u>COBAYA</u>

• Minimizing χ^2 : <u>Py-BOBYQA</u>

• New cosmological emulator (Günther, 2023; <u>2307.01138</u>)

• Our reference data set: SPT+Planck+BAO+Pantheon (SPBP)

Main Results

Main Results

	w/o	SH0ES	w/S	HOES	
Models	$\Delta\chi^2$	ΔAIC	$\Delta\chi^2$	ΔAIC	Without CLIOFC the
ACDM	0	0	0	0	models are not
$+\Sigma m_{\nu}$	-			_	performing appreciably
$+\Sigma m_{\nu} + CPL$	-	—		_	better than ΛCDM .
$+\Sigma m_{\nu} + N_{\text{eff}}$	_			_	
$+\Sigma m_{\nu} + \Omega_K$	· · _ ·	<u> </u>	<u>1112</u>		
$+\Sigma m_{\nu} + N_{\rm SIDR}$	-0.1	3.9	-17.1	-13.1	
m_e	0.0	2.0	-18.0	-16.0	
$m_e + \Sigma m_{\nu}$	-0.9	3.1	-21.6	-17.6	
$m_e + \Omega_K$	-1.0	3.0	-24.7	-20.7	
$m_e + \Omega_K + \Sigma m_{\rm i}$	-0.9	5.1	-25.8	-19.8	
EDE	-4.6	1.4	-31.1	-25.1	
Majoron	_				2

• Update previous constraints on Hubble Tension solutions with:

SPT-3G 2018, SH0ES and SDSS DR16.

- Introduced new tension metrics that improve the assessment.
- We used a Boltzmann code emulator, making the computations faster.
- SIDR, varying m_e and the Majoron models are no longer possible solutions to the Hubble Tension.
- None of the studied models actually solve the tension.

Future Plans

• Further investigation of the still viable models is needed.

• Revisit these models, along with others, with upcoming SPT-3G 2019/2020 and

ACT DR6 data.

• Incorporate improved numerical techniques.

• Perform forecasts for SO, CMB-S4 and future SPT surveys

Questions? Comments?

Ref: In the Realm of the Hubble Tension (2103.01183)

• Varying electron mass:

Compactification in higher dimensional theories results in scalar fields that alter the effective mass of elementary particles, specifically electrons.

Recombination rate is affected **Recombination time changes**

Additional parameter: m_{e,early}/m_{e,late}

More details: Hart & Chulba, 2018(<u>1705.03925</u>); Planck 2015(<u>1406.7482</u>)

$$\theta_s = \frac{r_s}{D_A} = \frac{\int_{z_*}^{\infty} \left[3\left(1 + \frac{3\rho_b}{4\rho_\gamma}\right)\right]^{-1/2} \left[\frac{8\pi G}{3}\Sigma_i\rho_i\right]^{-1/2} dz}{H_0^{-1}\sin_K \left[\int_0^{z_*} \left(\Sigma_i\Omega_i(z)\right)^{-1/2} dz\right]}$$

- Varying electron mass ($m_{e,early}/m_{e,late}$)
 - + Σm_v : Study interplay between masses of the two species
Elaborate Models

- Varying electron mass ($m_{e,early}/m_{e,late}$)
 - +**Σm**_ν
 - + Ω_{κ} : Changing the time of recombination changes the distance

$$\theta_s = \frac{r_s}{D_A} = \frac{\int_{z_*}^{\infty} \left[3\left(1 + \frac{3\rho_b}{4\rho_\gamma}\right) \right]^{-1/2} \left[\frac{8\pi G}{3}\Sigma_i\rho_i\right]^{-1/2} dz}{H_0^{-1}\sin_K \left[\int_0^{z_*} \left(\Sigma_i\Omega_i(z)\right)^{-1/2} dz \right]}$$

More details: Sekigushi & Takahashi (2020) (2007.03381)

Early Dark Energy

Early Dark Energy

- Also motivated by higher dimensional theories.
- A scalar field contributes briefly to the expansion rate around matter-radiation equality.
- Decrease in sound horizon, compensated by increase in H_0 .
- References: Poulin et al., 2018 (<u>1811.04083</u>), Smith & Poulin, 2023 (<u>2309.03265</u>)

Elaborate Models

• Varying electron mass (*m*_{e,early}/*m*_{e,late})

- +**Σm**_ν
- ο **+Ω_K**
- +Σm_ν +Ω_κ
- Early Dark Energy:
 - \circ Θ_i : Initial value of the scalar field
 - \circ Z_c : Critical redshift, i.e. the field becomes dynamical

$$\circ f_{\text{EDE}} = \rho_{\text{EDE}} / \rho_{\text{tot}}$$

Elaborate Models

• Varying electron mass (m_{e,early}/m_{e,late})

- +**Σm**_ν
- ο **+Ω_K**
- +Σm_ν +Ω_κ
- Early Dark Energy ($\theta_{i'} Z_{c'} f_{EDE}$)
- The Majoron:

Breaking lepton number symmetry produces a pseudo-scalar (ϕ) that gives neutrinos

their mass (like the Higgs). A particle Physics motivated SIDR.

Free parameters: m_{φ} , Γ_{eff} and N_{DR}

More details: Escudero & Witte, 2020 (1909.04044); Escudero & Witte, 2021 (2103.03249)

 Marginalised Posterior Compatibility Level (MPCL): What's the probability of getting 0 in the distribution of the difference between SH0ES and a model's H₀ posteriors?

$$\mathcal{P}(\delta) = \mathcal{N} \int dH_0 \,\mathcal{P}_{\text{model}}(H_0) \,\mathcal{P}_{\text{SH0ES}}(H_0 - \delta) \simeq \mathcal{N}' \sum_i w_i \,\mathcal{P}_{\text{SH0ES}}(H_{0,i} - \delta)$$
Normalisation
Normalisation
Weights from chains

 Marginalised Posterior Compatibility Level (MPCL): What's the probability of getting 0 in the distribution of the difference between SH0ES and a model's H₀ posteriors?

$$\mathcal{P}(\delta) = \mathcal{N} \int dH_0 \,\mathcal{P}_{\text{model}}(H_0) \,\mathcal{P}_{\text{SH0ES}}(H_0 - \delta) \simeq \mathcal{N}' \sum_i w_i \,\mathcal{P}_{\text{SH0ES}}(H_{0,i} - \delta)$$

$$q = \int_0^{\delta'} d\delta \,\mathcal{P}(\delta) \,. \qquad \qquad \text{Probability of finding } \delta \text{ in } [0,\delta'], \text{ such that} \\ \mathcal{P}(\delta') = \mathcal{P}(0)$$

 Marginalised Posterior Compatibility Level (MPCL): What's the probability of getting 0 in the distribution of the difference between SH0ES and a model's H₀ posteriors?

$$\mathcal{P}(\delta) = \mathcal{N} \int dH_0 \,\mathcal{P}_{\text{model}}(H_0) \,\mathcal{P}_{\text{SH0ES}}(H_0 - \delta) \simeq \mathcal{N}' \sum_i w_i \,\mathcal{P}_{\text{SH0ES}}(H_{0,i} - \delta)$$

 $q = \int_0^{\delta'} d\delta \,\mathcal{P}(\delta) \,. \qquad \qquad \text{Probability of finding } \delta \text{ in } [0,\delta'], \text{ such that} \\ \mathcal{P}(\delta') = \mathcal{P}(0)$

$$n = \sqrt{2} \operatorname{erf}^{-1}(q)$$
 Tension in units of σ , denoted by Q_{MPCL}

 Marginalised Posterior Compatibility Level (MPCL): What's the probability of getting 0 in the distribution of the difference between SH0ES and a model's H₀ posteriors?

$$\mathcal{P}(\delta) = \mathcal{N} \int dH_0 \,\mathcal{P}_{\text{model}}(H_0) \,\mathcal{P}_{\text{SH0ES}}(H_0 - \delta) \simeq \mathcal{N}' \sum_i w_i \,\mathcal{P}_{\text{SH0ES}}(H_{0,i} - \delta)$$

 $q = \int_0^{\delta'} d\delta \,\mathcal{P}(\delta) \,. \qquad \qquad \text{Probability of finding } \delta \text{ in } [0,\delta'], \text{ such that} \\ \mathcal{P}(\delta') = \mathcal{P}(0)$

 Marginalised Posterior Compatibility Level (MPCL): What's the probability of getting 0 in the distribution of the difference between SH0ES and a model's H₀ posteriors?

$$\mathcal{P}(\delta) = \mathcal{N} \int dH_0 \,\mathcal{P}_{\text{model}}(H_0) \,\mathcal{P}_{\text{SH0ES}}(H_0 - \delta) \simeq \mathcal{N}' \sum_i w_i \,\mathcal{P}_{\text{SH0ES}}(H_{0,i} - \delta)$$

 $q = \int_0^{\delta'} d\delta \,\mathcal{P}(\delta) \,. \qquad \qquad \text{Probability of finding } \delta \text{ in } [0,\delta'], \text{ such that} \\ \mathcal{P}(\delta') = \mathcal{P}(0)$

Ref: Doux & Raveri, 2021 (2105.03324); Leizerovich, Landau & Scóccola, 2023 (2312.08542)

• Marginalised Posterior Compatibility Level (MPCL):

 $n = \sqrt{2} \operatorname{erf}^{-1}(q)$ Tension in units of σ , denoted by Q_{MPCL}

• Difference of the Maximum A Posteriori (DMAP):

$$Q_{\text{DMAP, model}} \equiv \sqrt{\chi^2_{\text{min, model, } \mathcal{D} + SH0ES} - \chi^2_{\text{min, model, } \mathcal{D}}}$$
; $\chi^2 = -2 \ln \mathcal{L}$; $\mathcal{D} \equiv \text{data set}$

• Marginalised Posterior Compatibility Level (MPCL):

 $n = \sqrt{2} \operatorname{erf}^{-1}(q)$ Tension in units of σ , denoted by Q_{MPCL}

• Difference of the Maximum A Posteriori (DMAP):

 $Q_{\text{DMAP, model}} \equiv \sqrt{\chi^2_{\text{min, model, } \mathcal{D} + SH0ES} - \chi^2_{\text{min, model, } \mathcal{D}}}$; $\chi^2 = -2 \ln \mathcal{L}$; $\mathcal{D} \equiv \text{data set}$

• Akaike Information Criterion (AIC):

$$\Delta \text{AIC}_{\text{model}} = \chi^2_{\text{min, model, } \mathcal{D} + SH0ES} - \chi^2_{\text{min, } \Lambda \text{CDM}, \mathcal{D} + SH0ES} \quad ; N \equiv \text{\# of parameters} \\ + 2 \left(N_{\text{model}} - N_{\Lambda \text{CDM}} \right) \,.$$

• Marginalised Posterior Compatibility Level (MPCL):

 $n = \sqrt{2} \operatorname{erf}^{-1}(q)$ Tension in units of σ , denoted by Q_{MPCL}

• Difference of the Maximum A Posteriori (DMAP):

 $Q_{\text{DMAP, model}} \equiv \sqrt{\chi^2_{\text{min, model, } \mathcal{D} + SH0ES} - \chi^2_{\text{min, model, } \mathcal{D}}}$; $\chi^2 = -2 \ln \mathcal{L}$; $\mathcal{D} \equiv \text{data set}$

• Akaike Information Criterion (AIC):

$$\begin{split} \Delta \text{AIC}_{\text{model}} &= \chi^2_{\text{min, model, }\mathcal{D} + SH0ES} - \chi^2_{\text{min, }\Lambda\text{CDM},\mathcal{D} + SH0ES} \quad \text{; } N \equiv \text{\# of parameters} \\ &+ 2 \big(N_{\text{model}} - N_{\Lambda\text{CDM}} \big) \;. \end{split}$$

• AIC without SH0ES

Results

Further Results

Main Results

				w/o	SH0ES	w/ SH0ES	
Models	$H_0({\rm km/s/Mpc})$	$Q_{MPCL}(\sigma)$	$Q_{\rm DMAP}(\sigma)$	$\Delta \chi^2$	ΔAIC	$\Delta \chi^2$	ΔAIC
ACDM	$67.56(67.58)^{+0.38}_{-0.38}$	6.0	5.8	0	0	0	0
$+\Sigma m_{\nu}$	$67.60(67.01)^{+0.49}_{-0.43}$	5.9		_			_
$+\Sigma m_{\nu} + CPL$	$67.94(67.89)^{+0.78}_{-0.79}$	4.5		_	_		_
$+\Sigma m_{\nu} + N_{\text{eff}}$	$68.25(67.45)^{+0.62}_{-0.76}$	4.2		-	_		
$+\Sigma m_{\nu} + \Omega_K$	$67.67(66.88)^{+0.62}_{-0.62}$	5.1		_		<u> 19 anni 19</u>	_
$+\Sigma m_{\nu} + N_{\rm SIDR}$	$68.53(69.06)^{+0.69}_{-0.92}$	3.8	4.0	-0.1	3.9	-17.1	-13.1
m_e	$68.00(68.03)^{+1.06}_{-1.07}$	3.8	3.9	0.0	2.0	-18.0	-16.0
$m_e + \Sigma m_{\nu}$	$68.22(67.70)^{+1.09}_{-1.23}$	3.5	3.6	-0.9	3.1	-21.6	-17.6
$m_e + \Omega_K$	$68.20(67.42)^{+1.63}_{-1.60}$	2.9	3.1	-1.0	3.0	-24.7	-20.7
$m_e + \Omega_K + \Sigma m_{\nu}$	$69.75(67.75)^{+1.85}_{-2.93}$	1.5	3.0	-0.9	5.1	-25.8	-19.8
EDE	$68.18(68.55)^{+0.42}_{-0.79}$	3.8	2.7	-4.6	1.4	-31.1	-25.1
Majoron	$68.55(68.08)^{+0.48}_{-0.70}$	4.3	_	_	_		_

Compare with Olympics Paper

Model	$\Delta N_{ m param}$	M_B	Gaussian Tension	$Q_{ m DMAP}$ Tension		$\Delta \chi^2$	ΔAIC		Finali
ΛCDM	0	-19.416 ± 0.012	4.4σ	4.5σ	X	0.00	0.00	X	X
$\Delta N_{ m ur}$	1	-19.395 ± 0.019	3.6σ	3.8σ	X	-6.10	-4.10	X	X
SIDR	1	-19.385 ± 0.024	3.2σ	3.3σ	X	-9.57	-7.57	\checkmark	~
mixed DR	2	-19.413 ± 0.036	3.3σ	3.4σ	X	-8.83	-4.83	X	X
DR-DM	2	-19.388 ± 0.026	3.2σ	3.1σ	X	-8.92	-4.92	X	X
$SI\nu + DR$	3	$-19.440_{-0.039}^{+0.037}$	3.8σ	3.9σ	X	-4.98	1.02	X	X
Majoron	3	$-19.380\substack{+0.027\\-0.021}$	3.0σ	2.9σ	~	-15.49	-9.49	~	~
primordial B	1	$-19.390\substack{+0.018\\-0.024}$	3.5σ	3.5σ	X	-11.42	-9.42	\checkmark	\checkmark
varying m_e	1	-19.391 ± 0.034	2.9σ	2.9σ	~	-12.27	-10.27	~	~
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.9σ	\checkmark	-17.26	-13.26	\checkmark	~
EDE	3	$-19.390\substack{+0.016\\-0.035}$	3.6σ	1.6σ	~	-21.98	-15.98	\checkmark	~
NEDE	3	$-19.380^{+0.023}_{-0.040}$	3.1σ	1.9σ	\checkmark	-18.93	-12.93	~	~
EMG	3	$-19.397\substack{+0.017\\-0.023}$	3.7σ	2.3σ	~	-18.56	-12.56	~	1
CPL	2	-19.400 ± 0.020	3.7σ	4.1σ	X	-4.94	-0.94	X	X
PEDE	0	-19.349 ± 0.013	2.7σ	2.8σ	\checkmark	2.24	2.24	X	X
GPEDE	1	-19.400 ± 0.022	3.6σ	4.6σ	X	-0.45	1.55	X	X
$\rm DM \rightarrow \rm DR{+}\rm WDM$	2	-19.420 ± 0.012	4.5σ	4.5σ	X	-0.19	3.81	X	X
$\rm DM \rightarrow \rm DR$	2	-19.410 ± 0.011	4.3σ	4.5σ	X	-0.53	3.47	X	X

The Power of an Emulator

Q_{MPCL} for Each Model and Data-set

	৾৾৵৾	D58	D50	D00	Depo	DSPBR	DSPAD	Desparse
ACDM	2.7σ	6.0σ	5.4σ	5.9σ	6.3σ	6.0σ	6.3σ	6.1σ
$+ \Sigma m_{\nu}$	3.4σ	5.4σ	5.6σ	5.7σ	6.0σ	5.9σ	5.9σ	5.9σ
$+ \Sigma m_{ u} + CPL$	0.5σ	0.0σ	3.3σ	3.1σ	3.2σ	4.5σ	4.1σ	4.5σ
$+ \Sigma m_{ u} + N_{ m eff}$	1.4σ	4.0σ	1.3σ	4.0σ	4.3σ	4.2σ	5.0σ	5.1σ
$+ \Sigma m_{\nu} + \Omega_{K}$		4.0σ	5.2σ	5.2σ	5.2σ	5.1σ	5.3σ	5.3σ
$+ \Sigma m_{ u} + N_{SIDR}$	1.7σ	3.0σ	1.8σ	3.7σ	3.9σ	3.8σ	4.8σ	4.7σ
m _e	-0.1 σ	1.4σ	3.3σ	3.8σ	3.9σ	3.8σ	3.8σ	3.8σ
$m_e + \Sigma m_ u$	0.0σ	1.9σ	0.4σ	3.5σ	3.4σ	3.5σ	3.7σ	3.7σ
$m_e + \Omega_K$	-0.7σ	1.8σ	3.3σ	1.9σ	2.8σ	2.9σ	2.8σ	2.8σ
$m_e + \Omega_K + \Sigma m_{ u}$			1.2σ	1.0σ	1.3σ	1.4σ	1.4σ	1.4σ
EDE	1.5σ	4.2σ	2.2σ	3.8σ	3.7σ	3.7σ	3.1σ	3.1σ
Majoron	-0.1σ	3.7σ	1.4σ	4.0σ	4.2σ	4.3σ	4.0σ	4.4σ

8

ACDM Extensions

- $Q_{MPCL} \ge 3.1\sigma$ for all models with at least Planck+BAO.
- SPT & ACT marginally increase the tension compared to Planck+BAO.
- Expected degeneracies.
- ACT is slightly less compatible with larger N_{SIDR} .

Varying Electron Mass

- No longer a potential solution to the tension.
- Planck is still more constraining than SPT.
- CMB alone cannot constrain this model.

Varying Electron Mass

Varying Electron Mass+Σm

Planck 2018 (<u>Aghanim et al.</u>)

Planck+BAO SPT+Planck+BAO

SPT+Planck+BAO+Pantheon SPT+Planck+ACT+BAO+Pantheon

- Allowing Σm_{μ} to vary doesn't help.
- Degeneracy direction in the Σm_{12} -H₀ flips.

Varying Electron Mass+ Σm_{μ} + Ω_{ν}

- SPT+Planck+BAO+Pantheon
- SPT+Planck+ACT+BAO+Pantheon

1.5

- Polarization data from SPT is particularly useful.
- The model that reduces the tension the most.
- The model with the largest error bars.
- Degeneracy direction also flips in the Ω_{κ} -H₀ plane.

- SPT+Planck+BAO+Pantheon
- SPT+Planck+ACT+BAO+Pantheon

2

- Best constrained by CMB.
 - $Q_{MPCI} = 3.7\sigma$ while $Q_{DMAP} = 2.7\sigma$ for SPBP.
- Best-fit χ^2 compared to all models, w/ and w/o SH0ES.
- Difficult to constrain, with some bimodality.
- ACT DR4 is compatible with higher f_{EDE} .

Early Dark Energy: SPT vs ACT

The Majoron

The Power of an Emulator

- Boltzmann codes are the tightest bottleneck of Bayesian analysis.
- To speed up the process, use neural-networks based emulators of Boltzmann codes.
- Classical emulators build on previously trained samples.
- The emulator we use builts its training data while running, i.e. online
- Stable results for minimizations
- Refs: <u>arXiv:2307.01138</u>

https://github.com/svenguenther/cobaya

H₀ for Each Model and Data-set

Models	\mathcal{D}_{S}	$\mathcal{D}_{\mathrm{SP}}$	$\mathcal{D}_{\mathrm{SB}}$	$\mathcal{D}_{\mathrm{PB}}$	$\mathcal{D}_{\mathrm{SPB}}$	$\mathcal{D}_{\mathbf{SPBP}}$	$\mathcal{D}_{\mathrm{SPAB}}$	$\mathcal{D}_{\mathrm{SPABP}}$
ACDM	$68.5^{+1.5}_{-1.5}$	$67.40_{-0.50}^{+0.49}$	$67.69\substack{+0.55\\-0.56}$	$67.57\substack{+0.41 \\ -0.41}$	$67.52\substack{+0.37\\-0.37}$	$67.56\substack{+0.35 \\ -0.38}$	$67.49\substack{+0.34 \\ -0.39}$	$67.53\substack{+0.34 \\ -0.37}$
$+\Sigma m_{\nu}$	$60.0\substack{+5.0 \\ -5.6}$	$66.8^{+1.4}_{-0.7}$	$67.11\substack{+0.71\\-0.70}$	$67.61\substack{+0.53 \\ -0.48}$	$67.50\substack{+0.52 \\ -0.44}$	$67.60\substack{+0.49 \\ -0.43}$	$67.50\substack{+0.58 \\ -0.44}$	$67.59\substack{+0.53\\-0.42}$
$+\Sigma m_{\nu} + CPL$	71^{+10}_{-15}	83^{+14}_{-7}	$65.1^{+1.7}_{-2.3}$	$65.6\substack{+1.6\\-2.4}$	$65.6^{+1.6}_{-2.4}$	$67.94\substack{+0.78 \\ -0.79}$	$66.5^{+1.3}_{-1.7}$	$67.92\substack{+0.81 \\ -0.81}$
$+\Sigma m_{\nu} + N_{\text{eff}}$	$64.6\substack{+6.2 \\ -7.0}$	$66.1^{+1.9}_{-1.6}$	$70.5^{+1.8}_{-2.5}$	$68.20\substack{+0.63\\-0.78}$	$68.16\substack{+0.65\\-0.76}$	$68.25\substack{+0.62 \\ -0.76}$	$67.83\substack{+0.58\\-0.60}$	$67.93\substack{+0.57 \\ -0.58}$
$+\Sigma m_{\nu} + \Omega_{\rm k}$		$57.4_{-5.5}^{+4.4}$	$67.29\substack{+0.73\\-0.74}$	$67.55\substack{+0.63\\-0.63}$	$67.58\substack{+0.64\\-0.64}$	$67.67\substack{+0.62 \\ -0.62}$	$67.59\substack{+0.64\\-0.64}$	$67.69\substack{+0.62\\-0.62}$
$+\Sigma m_{\nu} + N_{\rm SIDR}$	$63.5\substack{+6.7 \\ -6.8}$	$68.0^{+1.6}_{-1.4}$	$70.0^{+1.5}_{-2.2}$	$68.47\substack{+0.68\\-0.95}$	$68.41\substack{+0.70 \\ -0.93}$	$68.53\substack{+0.69\\-0.92}$	$67.86\substack{+0.60\\-0.61}$	$67.96\substack{+0.57\\-0.58}$
m_e	112^{+53}_{-51}	50^{+10}_{-13}	$66.8^{+1.8}_{-1.8}$	$67.8^{+1.1}_{-1.1}$	$67.8^{+1.1}_{-1.1}$	$68.0^{+1.1}_{-1.1}$	$67.7^{+1.1}_{-1.1}$	$67.9^{+1.1}_{-1.1}$
$m_e + \Sigma m_{\nu}$	70^{+20}_{-20}	$58.9^{+2.1}_{-8.9}$	$72.8^{+3.3}_{-3.9}$	$68.0^{+1.1}_{-1.2}$	$68.0^{+1.1}_{-1.3}$	$68.2^{+1.1}_{-1.2}$	$68.0^{+1.2}_{-1.2}$	$68.2^{+1.2}_{-1.2}$
$m_e + \Omega_k$	74^{+16}_{-5}	$59.3^{+2.1}_{-9.3}$	$64.5^{+1.9}_{-2.6}$	$69.1^{+2.1}_{-2.1}$	$67.7^{+1.9}_{-1.8}$	$68.2^{+1.6}_{-1.6}$	$67.5^{+1.9}_{-1.9}$	$68.1^{+1.6}_{-1.6}$
$m_e + \Omega_k + \Sigma m_{\nu}$	<u></u>		$67.0_{-6.8}^{+4.8}$	$71.0\substack{+2.4\-3.9}$	$69.6^{+2.2}_{-3.7}$	$69.8^{+1.8}_{-2.9}$	$69.5_{-3.7}^{+2.3}$	$69.8^{+2.0}_{-3.0}$
EDE	$70.3^{+1.7}_{-2.2}$	$67.98\substack{+0.54 \\ -0.92}$	$69.6\substack{+0.9\\-1.6}$	$68.3_{-0.98}^{+0.52}$	$68.12\substack{+0.43 \\ -0.78}$	$68.18\substack{+0.42 \\ -0.79}$	$68.7_{-1.4}^{+0.6}$	$68.8^{+0.6}_{-1.4}$
Majoron	$74.4_{-3.7}^{+3.1}$	$68.75\substack{+0.62\\-0.86}$	$70.5^{+1.3}_{-2.2}$	$68.58\substack{+0.53\\-0.77}$	$68.50\substack{+0.48\\-0.70}$	$68.55\substack{+0.48\\-0.70}$	$68.6\substack{+0.46\\-0.64}$	$68.64\substack{+0.48\\-0.61}$

Models	Additional Parameters
ΛCDM	
$+\Sigma m_{\nu}$	$\Sigma m_{\nu} < 0.16 \text{ eV} (95\%)$
$+\Sigma m_{\nu} + \text{CPL}$	$\Sigma m_{\nu} < 0.29 \text{ eV} (95\%), w_0 = -0.97 \pm 0.08, w_a = -0.29 \pm 0.39$
$+\Sigma m_{\nu} + N_{\rm eff}$	$\Sigma m_{\nu} < 0.15 ~\mathrm{eV} ~(95\%)$, $\mathrm{N_{eff}} < 0.17 ~(95\%)$
$+\Sigma m_{\nu} + N_{\rm SIDR}$	$\Sigma m_{\nu} < 0.15 \text{ eV}(95\%), N_{\text{SIDR}} < 0.16 (95\%)$
$+\Sigma m_{\nu} + \Omega_K$	$\Sigma m_{\nu} < 0.17 \text{ eV} (95\%), \ \Omega_{\mathrm{K}} = -0.0005 \pm 0.0020$
m_e	$m_{e,early}/m_{e,late} = 1.003 \pm 0.006$
$m_e + \Sigma m_{\nu}$	$m_{e,early}/m_{e,late} = 1.0057 \pm 0.0090, \Sigma m_{\nu} < 0.29 \text{ eV}(95\%)$
$m_e + \Omega_K$	$m_{e,early}/m_{e,late} = 1.0035 \pm 0.0164, \Omega_{K} = -0.0005 \pm 0.0048$
$m_e + \Omega_K + \Sigma m_{\nu}$	$m_{e,early}/m_{e,late} = 1.03 \pm 0.03, \Omega_{K} = -0.004 \pm 0.006, \Sigma m_{\nu} < 0.48 \text{eV} (95\%)$
EDE	$\theta_{\rm i} = 1.8 \pm 0.9, \log(a_{\rm c}) = -3.8 \pm 0.4, f_{\rm EDE}(a_{\rm c}) < 0.06 (95\%)$
Majoron	$\log(m_{\phi}/\text{eV}) = 0.2950 \pm 0.6598, \log(\Gamma_{\text{eff}}) = 0.0556 \pm 0.8846, \Delta N_{\text{ADR}} < 0.15 (95\%)$
Me+Mnu: Results

Grey Band: Planck 2018 LCDM Purple Band: SH0ES

Me+Omk

Majoron

Sub eV mass

Param eter	SPT+ ACT+ Planck+ BAO
H₀	67.00±0.82
σ8	0.803±0.019

Param eter	SPT+ ACT+ Planck+ BAO
Ho	67.10±0.85
σ8	0.812±0.009

Param eter	SPT+ ACT+ Planck+ BAO
Ho	67.22±0.91
σ ₈	0.801±0.022

Param eter	SPT+ ACT+ Planck+ BAO
Ho	68.16±0.46
σ	0.818±0.009

Param eter	SPT+ ACT+ Planck+ BAO
H₀	66.89±1.62
σ	0.808±0.017

SLIDES FOR A GENERAL AUDIENCE TALK

 $V(\phi) = \Lambda_{\text{ede}}^4 \left[1 - \cos(\phi/f_{\text{ede}})\right]^n$ Kamionkowski & Riess(2022)