Multi-Messenger Astrophysical Neutrino Alerts from IceCube

Erik Blaufuss University of Maryland Astro-COLIBRI Multi-Messenger Astrophysics Workshop September 16-20, 2024

Photo credit: J. Werthebach IceCube/NSF

- accelerators
- several advantages:
 - Neutral
 - Freely propagate from source regions

Neutrinos can be created by hadronic interactions within or near cosmic

• At the highest energies, neutrinos are an astronomical messenger with

Completed and taking data since Dec 2010

....

Antarctic bedrock

Multi-Messenger Astrophysics with Neutrinos

- Since the detection of a diffuse astrophysical neutrino signal, IceCube has become an active participant in MMA observations of the high-energy universe
 - Notifying observational community when we detect neutrino events that are likely to be astrophysical
 - Perform realtime neutrino point-source searches when community identifies transient objects that are potential neutrino sources.
- My talk today will focus will describe our realtime alerts and followup programs.
 - We've also got several improvements coming online soon and are looking for suggestions on how we can improve alert clarity when communicating with you.

The High Energy Neutrino Sky

The High Energy Neutrino Sky

IceCube v globalfit (2023)

IceCube sensitive to all v flavors

Neutral Current / CC CC Muon Neutrino **Electron Neutrino** $\nu_{\rm e} + N \rightarrow {\rm e} + X$ $\nu_{\mu} + N \rightarrow \mu + X$ $\nu_{\rm x} + N \rightarrow \nu_{\rm x} + X$ shower (data) track (data) $\approx \pm 15\%$ deposited energy factor of \approx 2 energy resolution resolution $< 1^{\circ}$ angular resolution $\approx 10^{\circ}$ angular resolution (at energies ≥ 100TeV)

CC Tau Neutrino

"double-bang" and other signatures (simulation)

(not observed yet)

- Alerts coordinate on public alert systems
 - GCN
 - SNEWS
- Collaboration response coordinated by internal Realtime Oversight Committee
 - Ensure rapid response

IceCube Astrophysical single neutrino alerts

- Identify well reconstructed, high-energy neutrino candidates in real-time
 - Must be higher energy that most background events
- Transmit them to the North and advertise
 - Latency from detection to alert typically less than 1 minute
 - Detector uptime > 99%
- Community observations to search for multi-messenger signals
- In operation since April 2016

IceCube Realtime Track Alerts

- Two selection levels
 - Gold alerts : average 50% likely astrophysical origin
 - Bronze alerts: average 30% likely astrophysical origin
- More alerts per year
 - Gold: 12/yr expected
 - Bronze 18/yr additional expected

Event 133609/37927131-0

Time 2020-01-09 23:41:39 UTC

origin I origin

Realtime Point Source Searches

- Along with alerts, generate an all-sky track sample for rapid searches for point sources.
 - Sample dominated by atmospheric backgrounds, need event excess over background
- Rapidly respond to community generated alerts (GCN/ATels) of interesting astrophysical transient events
 - <u>Gravitational Wave Events</u>, reported Flaring AGN, etc.
 - IceCube track and cascade alerts
- Dedicated flaring source searches for catalog of known gamma-ray bright, variable sources (hours to 180 days) Details 10.1088/1748-0221/11/11/P11009

Upcoming improvements

10 10

- We have several improvements to our re
- For single neutrino alerts (tracks AND sł
 - New, faster followup <u>reconstruction tc</u>
 - Improvements to <u>followup reconstruc</u>
- Angula Updating flaring multi-neutrino source s \bullet
 - All-sky and catalog of potential source
 - Make alerts from searches for transier point sources public
- Move to new alert platforms
 - GCN over Kafka, SCiMMA

All expected to be deployed in next few months

Challenges, issues and opportunities

- We'd love input from the community on how we can improve things
 - How can we best update our alert messages to make them more useful for followup observations?
 - Considering including p-value maps, generally useful?
 - How best to communicate alert system changes and details?
 - Use multiple alert systems in parallel?
 - How to raise the profile of our shower alerts
 - They have high astrophysical purity!
 - How to highlight the "really special events" when we find these rarer alerts?
 Let's meet this week and discuss!

Upgrade plans

- Two-tier effort
 - IceCube Upgrade in progress
 - Focus on improved calibration and low energy neutrino physics
 - Test new technologies
 - Deployment in 2025/26 polar season
 - IceCube Gen2
 - Focused on larger samples of astrophysical neutrinos over a wide energy range

Ice is stable: Able to reprocess decade+ of neutrinos with improved analyses and systematics

IceCube Gen2

- Looking forward, to get larger and better samples of astrophysical neutrinos, a larger detector is needed
- Envision a wide-band neutrino observatory lacksquare
 - 8-10 x larger optical Cherenkov detector
 - Neutrino astronomy and multimessenger astrophysics
 - Askaryan radio detector array
 - Probe neutrinos beyond EeV energies
 - Surface particle detector
 - Detailed cosmic ray spectrum and composition measurements and veto capabilities

https://icecube-gen2.wisc.edu/

Skua

Adelie penguin

Thanks! IceCube Array at 60 MHz

IceCube Neutrino Alerts -MMA Tools

- Select events passing alert criteria in online filter computing farm at South Pole
 - Make wise choices to optimize limited realtime connectivity to Pole
 - Neutrino candidates: ~1 in 10⁶
 - Astrophysical neutrino candidates: ~1 in10⁹
 - Significant computing resources (~500 cores) needed to properly characterize and filter O(3kHz) of events
 - Results also used to measure realtime data quality and detector health.
- Transmit event data north via IceCube dedicated Iridium system
 - 24x7 data connection via Iridium (~10 kbps connection)

• Once in the North, significance computing to refine alert direction

- O(1000) cpu-hours per event to complete scans to full precision
- Coordination is also significant effort Realtime Oversight Committee
 - Provide immediate oversight and rapid vetting of alerts and realtime point source searches
- Alert communications

- <u>GCN "classic" Notices</u> are migrating to new <u>Kafka-based</u> brokers.
- New systems support richer alert content and more rapid development of new alerts
- GCN Circulars for higher visibility for significant results.

New Cascade neutrino alert stream added to GCN in July 2020

- Dominated (~85%) by astrophysical neutrinos
- Novel DNN tools used for event reconstruction
- Skymap probability maps published with GCN alert as FITS files

		Number of events/year	Proportion
Astrophysical	Cascades	6.7	85%
	Tracks	0.1	1%
	Total	6.8	86%
Atmospheric	Neutrinos	1.1	14%
	Muons	0.0	0.0%
Total Monte Carlo		7.9	100%
Data		8.1±1.0	

GCN High Energy Cascade Alert Documentation

