The Super-Kamiokande Supernova Alert

Share: 🔰 f in 8 🥶 🖂

Research highlights from the journals of the American Astronomical Society

HOME HIGHLIGHTS JOURNALS DIGEST

The Quest to Watch a Supernova in Real Time

By Susanna Kohler on 26 August 2024 FEATURES

An artist's illustration shows a core-collapse supernova radiating into its surroundings. Scientists hope to study these explosions in detail using key messengers: neutrinos. [Melissa Weiss/CfA]

Barry Pointon for the Super-Kamiokande Collaboration

British Columbia Institute of Technology, TRIUMF, U. Regina

BRITISH COLUMBIA INSTITUTE OF TECHNOLOGY

Barry Pointon, 3rd Astro-Colibri Workshop, Institut Pascal, Sept 17, 2024

barry pointon@bcit.ca

The Next Nearby Core-Collapse Supernova (CCSN)

Next galactic CCSN promises abundance of multi-messenger info

Differences from other multi-messenger alerts/events:

- SN \rightarrow galactic/nearby only (MW, LMC, SMC)
- Neutrinos → detected burst of 1's to 1000's of neutrinos
- Neutrino energies $\rightarrow O(10's)$ MeV
- Burst duration \rightarrow ~10 sec
- Observed SN neutrino bursts $\rightarrow 1$
- Last known burst \rightarrow 1987
- Estimated burst rate → 3 ± ? /100 yr

SN1987A – early image

Galactic CCSN science yield \rightarrow priceless

BRITISH COLUMBIA INSTITUTE OF TECHNOLOGY BARry Pointon, 3rd Astro-Colibri Workshop, Institut Pascal, Sept 17, 2024

Supernova Neutrino Detection

CCSN produces O(10⁵⁸) neutrinos

- > 99% of energy from gravitational collapse
- neutrino flavors have different fluxes
- different stages of production
- neutrinos stream from stellar envelope before shock breakout

Challenges to SN neutrino detection

- flux decreases as 1/distance²
- small reaction cross sections

Opportunity

- SN early warning alert before first EM radiation arrives at earth
- SN pointing direction

Credits:

Science - NASA, ESA, CSA, Mikako Matsuura (Cardiff University), Richard Arendt (NASA-GSFC, UMBC), Claes Fransson (Stockholm University), Josefin Larsson (KTH) Image Processing - Alyssa Pagan (STScI)

BRITISH COLUMBIA INSTITUTE OF TECHNOLOGY

Science Goals of CCSN Early Warning Alerts

Observe first shock breakout (SBO) radiation:

- Fully characterize the SBO at multi-wavelengths
- Measure neutrino burst-to-SBO time for tomographic snapshot of progenitor.

From Kistler, et al. <u>Tomography</u> of Massive Stars from Core <u>Collapse to Shock Breakout</u>. The Astrophysical Journal, Vol. 778, Issue 1, article id. 81, 9 pp. (2013). Arxiv:1211.6770

• Alert requires low latency and accurate pointing info

Challenges in MM Observation following SN Alert

(top) Estimated probability of a galactic CCSN for ranges of optical magnitude.

(bottom) The capabilities of several instruments with size of FOV compared to SK pointing accuracy. (outdated)

From Nakamura, et al <u>Multimessenger</u> <u>signals of long-term core-collapse</u> <u>supernova simulations</u>, Mon. Not. Roy. Astron. Soc. Vol. 461, Issue 3, (2016)

5

Super-Kamiokande Supernova Alert

Early warning alert from SN neutrino burst detection provided by:

- individual detectors (e.g., Super-Kamiokande)
- combined detectors (SNEWS)

- Super-Kamiokande recently upgraded SNWatch system.
 - improved burst detection (from Gd added to water)
 - improved SN pointing
 - lower latency from SN burst detection to alert
 - new SK_SN automated alert → GCN*

"Performance of SK-Gd's Upgraded Real-time Supernova Monitoring System," Y. Kashiwagi et al 2024 *ApJ* **970** 93. <u>doi:10.3847/1538-4357/ad4d8e</u> * SK_SN Notice information at https://gcn.nasa.gov/missions/sksn

The Super-Kamiokande Detector

- Largest water-Cherenkov detector with multiple physics experiments
 - 50 kt water volume.
 - Outer detector (active shield)
 - Inner detector (ID) 22.5 kt fiducial volume with ~11148 PMTs.
- Dissolved Gd added to water to improve reaction channel identification.

Super-Kamiokande – Water Tank and ID PMTs

Super-K tank (half-drained)

Super-K entrance

8

BRITISH COLUMBIA INSTITUTE OF TECHNOLOGY Barry Pointon, 3rd Astro-Colibri Workshop, Institut Pascal, Sept 17, 2024

Reaction Channels in WC Detector (H₂O)

Dominant reaction channels for 0 – 80 MeV neutrinos in water + Gd:

- 1. inverse beta decay (IBD): $\bar{\nu}_e + p \rightarrow e^+ + n$
- largest cross section, outgoing e⁺ directions nearly isotropic
 - neutron absorbed by Gd, delayed γ emission \rightarrow tag IBD
- 2. electron elastic scatter (ES): $v_{all} + e^- \rightarrow v_{all} + e^-$
- smaller cross section, outgoing e^- forward scattered in direction of flux
- 3. charged-current reactions with¹⁶0 nuclei:
 - $\nu_e + {}^{16}O \to {}^{16}F + e^-, \quad \bar{\nu}_e + {}^{16}O \to 16N + e^+$
- higher energy threshold, outgoing e^+ , e^- <u>nearly isotropic</u>

Supernova Neutrino Detection at Super-K

Cherenkov ring from single low energy event

neutrinos interact in water:

 SN @10 kpc, ~2500 neutrino events /burst.

ISH COLUMBIA

INSTITUTE OF TECHNOLOGY

Each event reconstructed for vertex, and outgoing e^{-}/e^{+} energy and direction

Super-K Realtime Burst Monitoring - SNWatch

BRITISH COLUMBIA

INSTITUTE OF TECHNOLOGY

SN Direction Reconstruction

BRITISH COLUMBIA

Upgraded direction reconstruction includes novel HEALPix-based method

paper in preparation.

Barry Pointon, 3rd Astro-Colibri Workshop, Institut Pascal, Sept 17, 2024 INSTITUTE OF TECHNOLOGY

SN Direction Reconstruction

Upgraded direction reconstruction includes novel HEALPix-based method

paper in preparation.

HP-sphere 12,288 pixels, ~2600 events, SN @10 kpc.

SK_SN Alarm Performance

- SNWatch reduced latency between burst detection and GCN notice (with ۲ pointing) to ~90 sec.
 - improvements to reduce < 60 sec.
- Golden alarm with lower threshold (35 events) allows coverage of SMC

Small Magellanic Cloud (SMC) Preliminary

Improvement in direction reconstruction

- <u>Angular</u> resolution for SN @10 kpc:
 - 3.78 ± 0.04° (7 MeV thresh.)
 - 3.68 ± 0.04° (6 MeV thresh.)
- Much faster than previous, O(secs) vs O(mins)

Barry Pointon, 3rd Astro-Colibri Workshop, Institut Pascal, Sept 17, 2024

Summary and Action Points

- Improvements to SNWatch
 - improved burst detection
 - faster and more accurate pointing information
 - automated alert (SK_SN) to GCN*
 - → Improved opportunity for MM SBO observations

 \rightarrow SN alert response plans should be reviewed and revised

- Other progress:
 - Super-K + KamLAND has combined pre-SN alarm**
 - neutrinos from Si-burning stage
 - for nearby stars O(100 pc)
 - Hyper-Kamiokande under construction (8X)
- * SK_SN Notice information at https://gcn.nasa.gov/missions/sksn
- **https://www.lowbg.org/presnalarm/

Strategies for SN Alert Follow-up

For discussion:

Optimizing MM strategies for SN Alert follow-up:

- response strategy? pointing vs survey instrument
- response time:
 - alert → action (ToO? <u>priority</u>?)
 - slewing time
- instrument properties:
 - FOV and tiling
 - limiting magnitude and saturation
- observability constraints and observer patience
 - may need to point for several hours

Backup slides

Super-K Realtime Burst Detection - SNWatch During data acquisition:

- Realtime event analysis and reconstruction
- identify IBD events from coincident prompt and delayed events
- Search for <u>cluster</u> of events in 20 s time window

When cluster found:

- characterize event vertex distribution as uniform or non-uniform
- check number of events in cluster
 - If vertices not uniform or events < 25, on "silent" alarm issued
- SN direction reconstructed from all burst events.

Golden or Normal alert based on number of events in cluster.

- Golden: > 60 events (lowered to 35), Normal: > 25 events
- If alarm criteria met:
 - SK_SN notice issued on GCN
 - Automatic alert of burst sent to SNEWS
 - SK experts manually send notice to TNS, IAU-CBAT and ATEL.

Super-Kamiokande

- located in mine, deep under mountain
 - ~ 1 km rock overburden, passive shielding of atmospheric muons
- large volume water-Cherenkov detector
 - cylindrical tank (d = 39.1 m, h = 41.4 m)
 - ultra-pure water, total mass = 50 kt
- water volume divided into inner detector (I.D.) and outer detector (O.D.)
 - O.D. active shielding of atmospheric muons
 - 1885 8" PMTs
 - mass = 18 kt
 - I.D. is the active detector
 - 11146 20" (50 cm) PMTs
 - mass = 32 kt
 - fiducial volume > 200 cm from walls
 - outer water volume acts as passive shielding
 - Final fiducial mass = 22.5 kt

Core-Collapse Supernovae

with an iron core

High mass stars (M > $8M_{\odot}$) undergo successive stages of nuclear fusion (e.g., 25 M_{\odot} .)

- H burning \rightarrow He (7 Myr) Main Sequence
- He burning → C, O, ... (500,000 yr) H shell
 C burning → O, Ne, Mg, (600 yr)
 Ne, O burning → Si, ... (1 yr)
 Si burning → Fe, ... (1 day)
 Fe burning ?
 Cores of highly evolved massive stars have overlying shells of the fusion products from earlier burning stages

iron core

- fusion not possible an Fe core no "Fe burning".
 - cannot generate energy to sustain hydrostatic equilibrium.

TISH COLLIMBIA TITUTE OF TECHNOLOGY Barry Pointon, 3rd Astro-Colibri Workshop, Institut Pascal, Sept 17, 2024 21

Core-Collapse SNe

- When Fe core > 1.4 M_{\odot} ,
 - degeneracy pressure cannot sustain
 - Fe core (r ~ 6000 km) collapses to PNS (r ~ 30 km) in < 1 s.
 - CC mechanism essentially releases gravitational PE
- Peak energy output ~10⁵³ erg s⁻¹ (~10⁴⁶ J s⁻¹)
 - > output of visible universe
 - visible light (~0.01%
 - explosive kinetic energy (~1%)
 - neutrinos (~99%)
- Emission ~10⁵⁸ neutrinos
 - energies ~10's MeV
 - mixed neutrino flavour content
 - time dependent energies and luminosities

Stages of SN Neutrino Production During CCSN

Hot dense environment

- ~10¹¹ 10¹⁴ g cm³
- endothermic and reversable reactions possible

Breakout Burst / Neutronization (10's ms)

- Out-going shock wave causes nuclei to dissociate
 - v_e production by electron capture $e^- + p \rightarrow n + v_e$

Accretion (10's - 100's ms)

- powered by gravitational PE of matter accreting onto PNS
 - may have complex time structure (SASI)
 - v_e , \bar{v}_e production dominates, but flavours produced.

Cooling (10's s)

- PNS shrinks, sheds gravitational PE and thermal energy
 - positron annihilation, $e^+ + e^- \rightarrow \nu + \bar{\nu}$
 - <u>all neutrino flavours produced in equal abundance</u>

Supernova Neutrino Production – Light Curves

 $1 \text{ B} = 10^{51} \text{ erg} = 1 \text{ foe}$

A. Mirizzi, et. al Supernova Neutrinos: Production, Oscillations and Detection. Riv Nuovo Cim. 39 (2016) no.1-2, 1 arXiv: 1508.00785 $u_x =
u_\mu$, $u_ au$, $ar{
u}_\mu$, $ar{
u}_ au$

Model of 27 M_{\odot} progenitor

Barry Pointon, 3rd Astro-Colibri Workshop, Institut Pascal, Sept 17, 2024

Supernova Neutrino Production – Light Curves

Neutrino light curve, first 500 ms: Breakout and Accretion Nakazato 2013 Model: 20 M_o, Shen EOS, 100 ms revival time, Metallicity 0.004.

Barry Pointon, 3rd Astro-Colibri Workshop, Institut Pascal, Sept 17, 2024

BCI

Supernova Neutrino Production – Energy Spectrum

Energy spectrum at t = 100 ms. (Nakazato 2013)

Source: SNEWPY Github Repo L. Baxter *et al.* (SNEWS Collaboration): "SNEWPY: A Data Pipeline from Supernova Simulations to Neutrino Signals". Journal of Open Source Software 6 (2021) 67, 3772. arXiv: 2109.08188,

Supernova Neutrino Production – Neutrino Oscillations

- Flavour content of energy spectrum changes when neutrinos undergo "<u>flavour-swapping</u>" MSW oscillations as they travel through stellar envelope
- Oscillations depend on "ordering" or "hierarchy" of the neutrino mass eigenstates (m₁, m₂, m₃)
 - $m_1^2 \approx m_2^2 < m_3^2$ normal mass ordering (NMO) or NH or
 - $m_3^2 < m_1^2 pprox m_2^2$ inverted mass ordering (IMO) or IH

Supernova Neutrino Production – Flavour Swapping

t = 100 ms, (Nakazato 2013 Model) with MSW oscillations with NMO

$$\nu_e \rightleftharpoons \nu_{\mathrm{x}}, \qquad \bar{\nu}_e \rightleftharpoons \bar{\nu}_{\mathrm{x}}$$

Source: SNEWPY Github

SH COLUMBIA

Barry Pointon, 3rd Astro-Colibri Workshop, Institut Pascal, Sept 17, 2024 FUTE OF TECHNOLOGY

WC Neutrino Reaction Channels Cross Sections

Barry Pointon, 3rd Astro-Colibri Workshop, Institut Pascal, Sept 17, 2024

BCIT

Predicted SN Neutrino Events for Super-K

- E.g., with two SN models, Wilson (Livermore) and Nakazato1
 - Different progenitor mass, nuclear EOS, hydrodynamics
- simulated neutrino oscillations for NMO and IMO
- fiducial SN distance of 10 kpc (~centre of galaxy).
 - integrated over 18 s
- NK1 (2013): 20 M_{\odot} , Shen EOS, 200 ms revival time, Metallicity 0.02.

• •	1H =	NMO
-----	------	-----

	Wilson			NK1			NK2		
	no osc.	NH	IH	no osc.	/ NH \	IH	no osc.	NH	IH
$\bar{\nu}_e + p \rightarrow e^+ + n$	4923	5667	7587	2076	2399	2745	1878	2252	2652
$v_e + e^- \rightarrow v_e + e^-$	74	130	114	43	56	56	39	54	54
$\bar{v}_e + e^- \rightarrow \bar{v}_e + e^-$	25	29	37	10	12	14	9	11	13
$v_x + e^- \rightarrow v_x + e^-$	41	33	34	17	19	18	17	17	17
$\bar{\nu}_x + e^- \rightarrow \bar{\nu}_x + e^-$	34	33	29	14	14	14	13	13	14
$v_e + {}^{16}\text{O} \rightarrow e^- + X$	8	662	479	22	78	74	16	72	68
$\bar{\nu}_e + {}^{16}\mathrm{O} \to e^+ + X$	64	196	531	27	48	70	20	41	64
total	5169	6750	8811	2209	2626	2991	1992	2460	2882
					- X /				

from "Real-Time Supernova Neutrino Burst Monitor at Super-Kamiokande"

BCI

Predicted SN Neutrino Events for Super-K

Example of directional signal for NH:

Total – 2626 events

Background - IBD (2399) + O-16 (128) = 2525 events (96.2%)

	·	Wilson		/	NK1	ĺ		NK2	
	no osc.	NH	IH	no osc.	NH	IH	no osc.	NH	IH
$\overline{v}_e + p \rightarrow e^+ + n$	4923	5667	7587	2076	2399) 2745	1878	2252	2652
$v_e + e^- \rightarrow v_e + e^-$	74	130	114	43	56	56	39	54	54
$\bar{v}_e + e^- \rightarrow \bar{v}_e + e^-$	25	29	37	10	12	14	9	11	13
$v_x + e^- \rightarrow v_x + e^-$	41	33	34	17	19	18	17	17	17
$\bar{\nu}_x + e^- \rightarrow \bar{\nu}_x + e^-$	34	33	29	14 🗡	14	14	13	13	14
$v_e + {}^{16}\text{O} \rightarrow e^- + X$	8	662	479	2,2	78	74	16	72	68
$\bar{\nu}_e + {}^{16}\mathrm{O} \to e^+ + X$	64	196	531	/27	48	70	20	41	64
total	5169	6750	8811	/ 2209	2626	2991	1992	2460	2882

Signal - ES: 101 events (3.8%)

Supernova Neutrinos – SN1987A

February 24, 1987, 07:35 UT

- 168,000 yrs ago, Sanduleak 69 202 undergoes CC
 - blue supergiant
 - naked eye visibility
- in LMC, distance 51.4 kpc
- recent evidence of NS
- 25 SN neutrinos detected
- proved basic theory of CCSN

2002 Nobel Prize in Physics Masatoshi Koshiba, Kamiokande II, Japan (1/4) "<u>Observation of a</u> <u>Neutrino Burst from the Supernova</u> <u>SN1987a</u>"

