

The Large Array Survey Telescope

Ruslan Konno On behalf of the LAST collaboration

Astro-COLIBRI workshop, Orly

2024-09-16

www.weizmann.ac.il/wao

Designing a cost effective survey instrument

- What is a survey instrument supposed to do?
- One useful measure the grasp
 - Volume per unit time in which a standard candle is detectable

$$G = \Omega A^{3/4} \sigma^{-3/2} \frac{t_E^{3/4}}{t_E + t_D}$$

 Ofek & Ben-Ami, PASP 132, 2020

 Ω ... FoV A... effective area σ ... seeing or pixel-size t_{ε} ... exposure time t_{D} ... dead time

- Dependency on *A* is to the power of < 1
 - Cost of a telescope is relative to *A* to the power of > 1

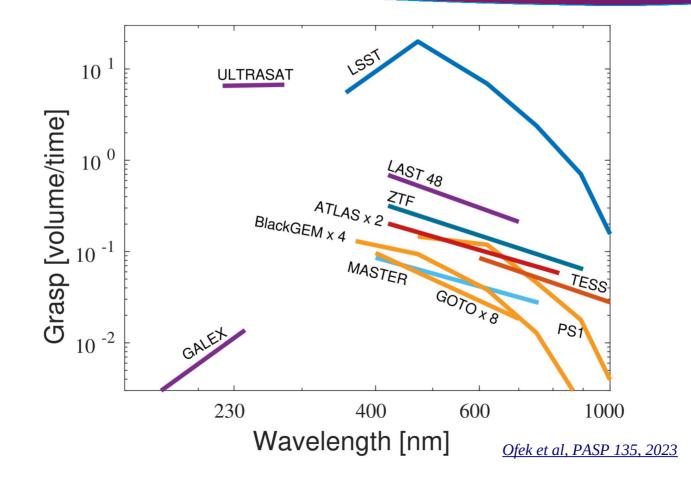
Designing a cost effective survey instrument

- *N* smaller telescopes will be more cost-effective than a larger telescope with the same grasp
 - Nothing new, claim also holds when using étendue
- How small can the telescopes be?
 - Aperture > 20-cm; otherwise telescope is diffraction limited
- However! Larger FoV on smaller telescopes requires shorter focal lengths
 - \rightarrow Resolution suffers, PSF may no longer be Nyquist sampled
 - e.g. a 30-cm f/2 telescope requires 3 µm pixels for 1" pix⁻¹
 - <4 μ m pixel cameras only started entering the commercial market in ~2019

Large Array Survey Telescope (LAST)

- Optical survey instrument
- Array of small telescopes with small pixels and wide FoV
 - 28-cm f/2.2
 - 3.6 µm pixels

 → 1."25 pix⁻¹
 - 61 Mpix (9600x6400)
 - \rightarrow 7.4 deg² FoV
- 4 telescopes per unit
 - (Mostly) commercial parts



Large Array Survey Telescope (LAST)

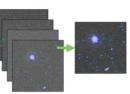
- First node being constructed in Israeli Negev Desert
- Envisioned to consist of 48 telescopes (12 units)
 - Total FoV of 355 deg²
 - 32 are deployed and operational
- Total node cost at \$1.5M
 - All hardware and construction

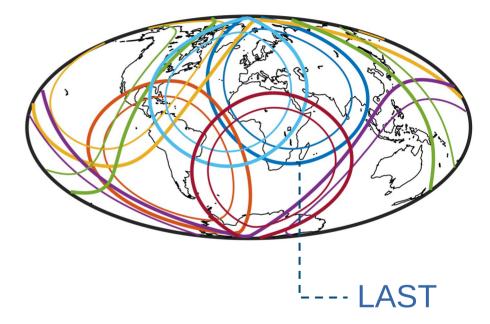
Grasp of survey instruments

Advantages and disadvantages

- Modular and scalable
- Off-the-shell components are cheap
- Easy to modify (e.g. filters, polarizers)
- Failure points generally isolated

But!

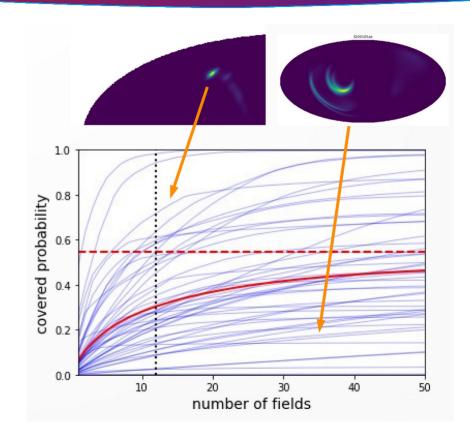

- Many failure points (several computers, cameras, focusers,...)
- High data rate
 - 8640 images per hour \rightarrow 2.2 Gbit/s (large chip, small pixels)
 - \rightarrow Need for highly efficient procedure and pipeline
 - \rightarrow Existing code too slow; in-house software AstroPack



LAST survey mode

- Scan the sky in visits
 - 20x20 s exposures per visit
 - Images are coadded

- Limiting magnitude of 19.6 (20.8) mag in 20 (20x20) s exposure
- With a wide FoV of 355 deg²
 - \rightarrow scanning speed of 17,640 deg² per night
 - $\rightarrow\,$ cadence of visible sky every 1.4 days
- Covers the Asiatic gap
- No filter (clear), AB system

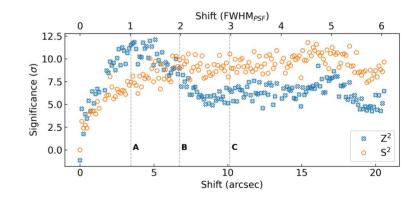


Science goals

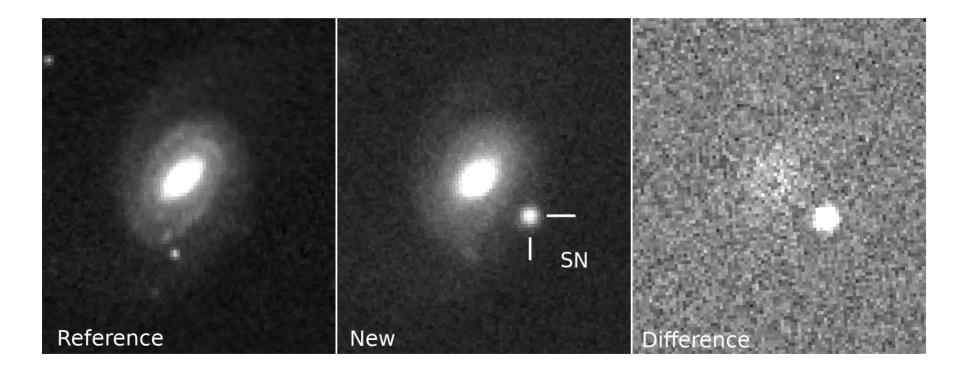
- Primarily transients detection via survey mode
- Follow-up
 - GWs, SNe, GRBs, flares,...
- Cosmology (lensing and time delays)
- Exoplanet, stellar activity, stellar systems
- Solar system + Oort cloud
- Strength: short time scales

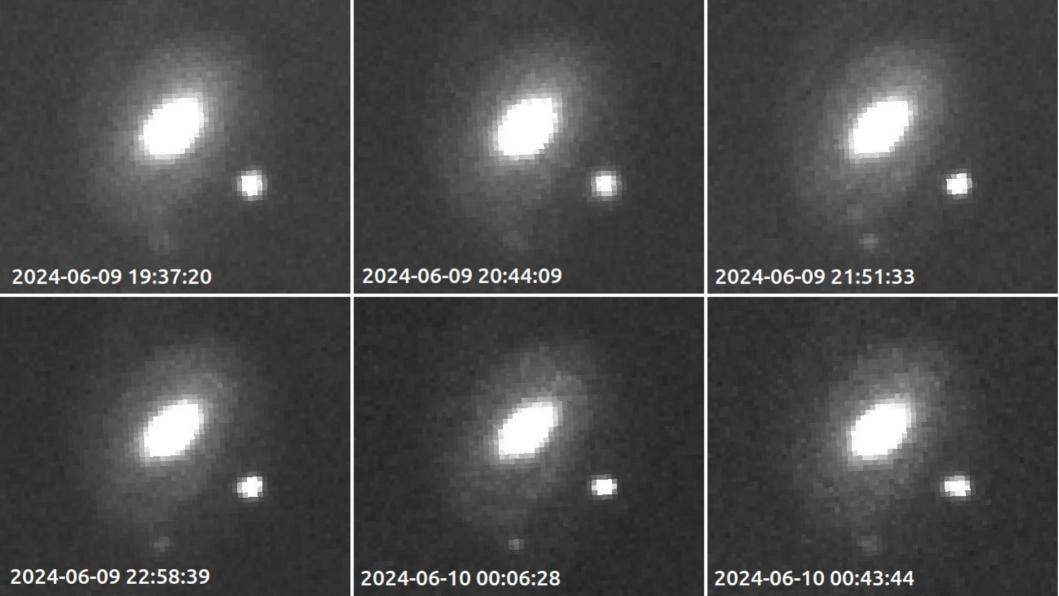
Localization large uncertainty areas (GWs,GRBs,..)

- 12 unit fields can cover 355 deg² at once
- Error regions of O3 alerts
 - 355 deg² corresponds to ~55% of observable error region for average alert
- 24 fields: 70%; 36 fields: 78% ...
- Up to 648 fields per night observable


Credit: Nora Linn Strotjohann

Transients search


- Transients search via proper subtraction (ZOGY) Zackay, Ofek & Gal-Yam, ApJ 830, 2016
- · Aim to identify real transients without machine learning
 - Using either hypothesis tests or heuristic methods
 - Example: registration errors
 - → New vs moving source statistic (*translient*)


Springer et al., AJ 167, 2024

- Estimated efficiency of > 80% and purity of > 90%
- First four weeks of survey observations; 28 transients reported to TNS

Transients search

Current status

- Construction of a new enclosure which will be able to house 72 telescopes
 - Full array by Q4/2025
 - Additional enclosures for further instruments
 - Multi-Aperture Spectroscopic Telescope (MAST): Spectroscope fed by several 60cm telescopes via optical fibers
 - Panchromatic Survey Telescope (PAST): Array of 35-cm telescopes with 8 broad overlapping wavebands
- LAST in general running from data taking to alert production.
 - However, still in engineering phase and not ready for full automatization.

Summary

- LAST is an under construction cost-effective optical sky survey
- Will study the unexplored phase space of fast transients
 - High FoV up to 355 deg²
 - High cadence 1.4 d cadence for visible sky
- Will be part of a larger facility with follow-up instruments, MAST and PAST

Value Property Number of telescopes (planned; 2023 June) 48 Number of telescopes (2023 March) 32 Telescopes per mount 4 279.4 mm Telescope aperture System equivalent aperture $1.9 \text{ m} (\cong 0.28 \sqrt{48})$ Telescope focal length 620 mm 1.25 pix^{-1} Pixel scale $2.2 \times 3.3 \text{ deg} \cong 7.4 \text{ deg}^2$ Telescope FoV System FoV $355 \, \mathrm{deg}^2$ $\simeq 2.9 \times 10^9$ Total number of pixels $B_{\rm p}$ Limiting magnitude (5 σ in 20 s) ≈ 19.6 mag $B_{\rm p}$ Limiting magnitude (5 σ in 20 \times 20 s) ≈ 21.0 mag Location Neot-Smadar, Israel Longitude (WGS84) 35.0407331deg E Latitude (WGS84) 30.0529838deg N Height (WGS84) 415 m

The First LAST Node System's Parameters

