Investigate the impact of magnetar on the kilonova afterglow emission in short GRBs through late-time radio observations

Date: 17.09.2024

In collaboration with: Prof. Soebur Razzaque, Dr. Kuntal Misra, Dr. Resmi Lekshmi, Dr. K. G. Arun

Duration & Progenitor based scheme

Classification scheme of the GRBs

Long/Soft

Duration & Progenitor based scheme

Short/Hard

Courtesy: NASA and A. Feild (STScl)

Classification scheme of the GRBs

Courtesy: NASA and A. Feild (STScl)

Progenitors of short GRBs

Peter Mészáros, 2019

Red Kilor

Progenitors of short GRBs

Peter Mészáros, 2019

LATE-TIME RADIO EMISSION FROM KILONOVA EJECTA

- The tidal ejecta that generates the kilonova emission is also capable of driving a shock when it interacts with the ambient medium.
- This mildly-relativistic shock is expected to decelerate at time scales of a few years, depending on the density of the ambient Medium and mass ejection rate (Nakar & Piran 2011).
- If the resultant product of the merger is a millisecond magnetar, even if short-lived, it imparts the rotational energy to the merger ejecta which can enhance the radio flux.
- Detection, or even limits of the radio emission from the merger ejecta will provide a joint constraint on the magnetar rotational energy, amount of tidally ejected mass and density of the ambient medium.

Fig 1: Different electromagnetic counterparts from NS–NS and BH–NS mergers which includes jet afterglow, kilonova emission, and late time kilonova afterglow emission.

Necessary parameters for the search

- **\star** The radio flux is expected to peak around the time of deceleration (~2-10 yrs since the burst).
- ★ From the figure, we can see the radio flux peaks near 600 MHz which is close to GMRT 610 MHz band.

G For spherical outflow, we can calculate deceleration timescale

$$t_{dec} \sim \frac{R_{dec}}{c\beta_0} \approx 1.2yr \left(\frac{E_{rot}}{10^{52} erg}\right)^{1/3} \left(\frac{n_0}{cm^{-3}}\right)^{-1/3} \beta_0^{-5/3}$$

 $\Box \quad \text{Observed frequency} \quad \nu_{a} \sim 2 \text{GHz} \text{E}_{52}^{0.1} \text{n}_{0}^{0.6} \beta_{0}$

The observed peak flux can be calculated from Nakar & Piran (2011):

$$F_{\nu,obs,pk} = 3mJy \left(\frac{E_{rot}}{10^{52} erg}\right) \left(\frac{n}{cm^{-3}}\right)^{0.83} \left(\frac{\epsilon_B}{0.1}\right)^{0.83} \left(\frac{\epsilon_e}{0.1}\right)^{1.3} \beta_0^{2/3} d_{28}^{-2}$$

Sample Selection :

Exclusion:

- ★ Sample from previous studies (Metzger & Bower 14, Horesh+16, Fong+16).
- ★ Redshift greater than 0.5, since the expected signal is weak
- ★ Low ambient number density through afterglow modeling.
- ★ No potential signature of magnetar in X-ray afterglow light curve and kilonova signature in optical/IR light curves.
- ★ Bursts having southern declination due to inaccessibility of GMRT.

Sample Selection :

Exclusion:

- ★ Sample from previous studies (Metzger & Bower 14, Horesh+16, Fong+16).
- ★ Redshift greater than 0.5, since the expected signal is weak
- ★ Low ambient number density through afterglow modeling.
 - No potential signature of magnetar in X-ray afterglow light curve.
- ★ Bursts having southern declination due to inaccessibility of GMRT.

Signature of magnetar as a central engine

- **1.** Early time prolonged x-ray emission (10 100 s since burst)
- 2. Temporary flattening or plateau in x-ray lightcurve (100 1000 s since burst)
- 3. Late time x-ray excess (almost fews days since burst)

Sample Selection :

Exclusion:

- ★ Sample from previous studies (Metzger & Bower 14, Horesh+16, Fong+16).
- ★ Redshift greater than 0.5, since the expected signal is weak
- ★ Low ambient number density through afterglow modeling.
 - No potential signature of magnetar in X-ray afterglow light curve.
- ★ Bursts having southern declination due to inaccessibility of GMRT.

Signature of magnetar as a central engine

1. Early time prolonged x-ray emission (10 – 100 s since burst)

Observation :

Ghosh et al. 2024a

GRB Name	Frequency	T^{\dagger}_{0bs}	3- σ upper limit	νL_{ν}	References
	Band (GHz)	(\mathbf{y})	$(\mu { m Jy})$	(erg/s)	
050709	0.61	11.2	< 460	$< 5.16 \times 10^{37}$	Our work
	0.33	11.3	< 471	$< 3.66 \times 10^{37}$	Our work
061210	0.61	9.9	< 165	$<2.03\times10^{38}$	Our work
	0.33	9.9	< 369	$<2.42\times10^{38}$	Our work
100625A	1.25	8.1	< 45.6	$<1.33\times10^{38}$	Our work
140903A	1.25	3.9	< 61.5	$< 1.06 \times 10^{38}$	Our work
	0.65	3.9	< 105	$<9.21\times10^{37}$	Our work
160821B	1.25	1.9	< 46.5	$<1.55\times10^{37}$	Our work

Table 1: Details of the observation

Magnetar Model

Ghosh et al. 2024a

Model light-curves with varying model parameters

Light curve analysis

Allowed maximum rotational energy of a magnetar

$$t_{dec} \sim \frac{R_{dec}}{c\beta_0} \approx 1.2yr \left(\frac{E_{rot}}{10^{52} erg}\right)^{1/3} \left(\frac{n_0}{cm^{-3}}\right)^{-1/3} \beta_0^{-5/3}$$
$$F_{\nu,obs,pk} = 3mJy \left(\frac{E_{rot}}{10^{52} erg}\right) \left(\frac{n}{cm^{-3}}\right)^{0.83} \left(\frac{\epsilon_B}{0.1}\right)^{0.83} \left(\frac{\epsilon_e}{0.1}\right)^{1.3} \beta_0^{2/3} d_{28}^{-2}$$

- Parameter space plot has been constructed with different combination of rotational energy and number density of ambient medium.
- Maximum allowed energy estimation.
- Model flux < 3 sigma upper limit Allowed space

Model flux > 3 sigma upper limit Forbidden space

GRB Name	Ejecta Mass (M_{\odot})	Number density (cm ⁻³)	References
050709	0.05, 0.1	$1.0^{+0.5}_{-0.4}$	1,2
100625A		≤1.5	3
140903A	0.01	$3.40^{+2.9}_{-1.6} \times 10^{-3}$	1,4
160821B	≤ 0.006	$0.13^{+0.05}_{-0.04}$	5,6

Note: 1 - Fong et al. (2015), 2 - Jin et al. (2016), 3 - Fong et al. (2013), 4 -Troja et al. (2016a), 5 - Troja et al. (2019), 6 - Lamb et al. (2019)

Allowed maximum rotational energy of a magnetar

Allowed maximum rotational energy of a magnetar

Summary

- The radio spectrum is expected to peak in MHz band with the deceleration time 2-10 years dependent on the ejecta mass, rotational energy of magnetar and ambient medium density.
- GMRT observations aimed at searching the signature of late time merger ejecta emission powered by a magnetar at 610, 325 MHz and 1.4 GHz.
- □ If the emission was detected, it could be the first ever detection of tidal ejecta in radio. But we found no late time emission at the x-ray afterglow location.
- **u** null detection provided us stringent constraints on the magnetar rotational energy and ambient medium density.

Future Prospect

- Square Kilometer Array (SKA I) in lower frequencies will be highly beneficial for the observation of late time radio detection of merger ejecta.
- 1. RMS Sensitivity will be highly improved (muJy level).
- 2. Better angular resolution.

THANK YOU

For your attention

For more information: https://academic.oup.com/mnras/article/527/3/8068/7475893

Comparison with Previous Studies

	Our work	Horesh et al. 2016	Fong et al. 2016	Metzger & Bower 2014	Nakar & Piran 2011
Time of observation since burst	2-11	1-6	3-5	1-3	Theoretical
Observed Frequency	GMRT 610 MHz,325MHz , 1.4 GHz	VLA 3 GHz, ATCA 2.1 GHz	VLA 6 GHz	VLA 3 GHz	Theoretical
Energy injection from magnetar	Y	Y	Y	Y	Ν
Synchrotron frequencies	Y	Y	Y	Y	Y
Doppler effect	Y	Y	Ν	N	N
Non-relativis tic transition	Y	N	Ν	N	N

Most energetic explosion in the Universe

Energy in a blink: How powerful GRBs are?

A window to the extraordinary & extreme Universe