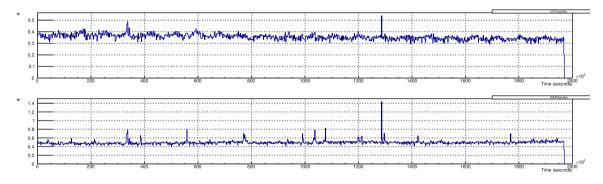
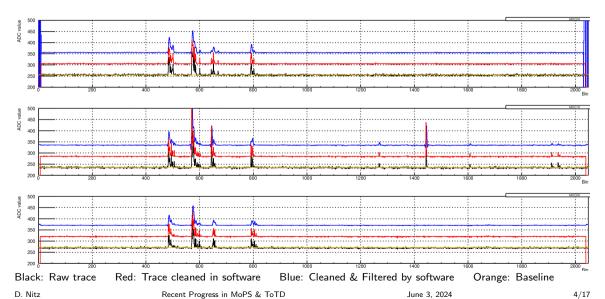
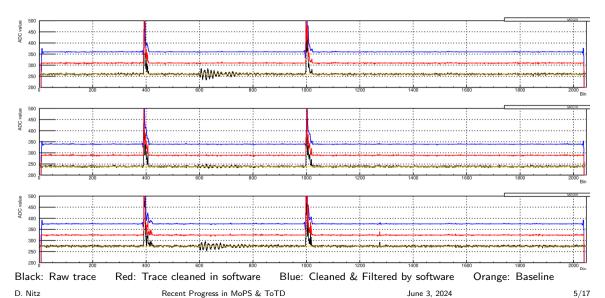
Recent Progress in MoPS & ToTD


D. Nitz

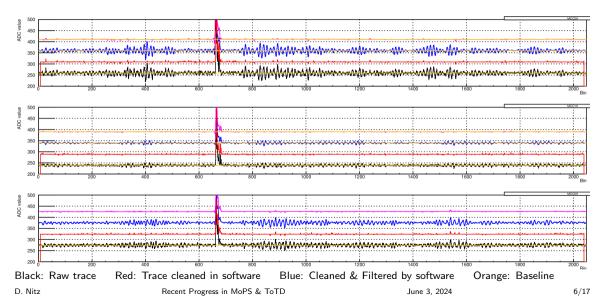
- Recently we have been running a special program (not in CDAS) to record MoPS & ToTD T2s taken in Tanquito Jr. and Feche on a memory stick.
 - ${\scriptstyle \bullet}\,$ Data is available in iRods at /pauger/AugerPrimeAux/UubT2s
 - There are currently several hundred files containing 10,000 traces each.
 - Software is available at KIT GitLab in directory ...uub/firmware/trigger/linux_test_code/t2s/
- Not understood why rate is higher in Feche.
 - Example of symptom of highly disparate ToTD and MoPS rates between different stations.


Eample Data from TanquitoJr

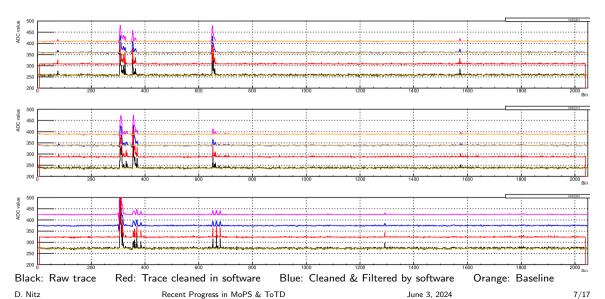
Top: ToTD rate Bottom: MoPS rate



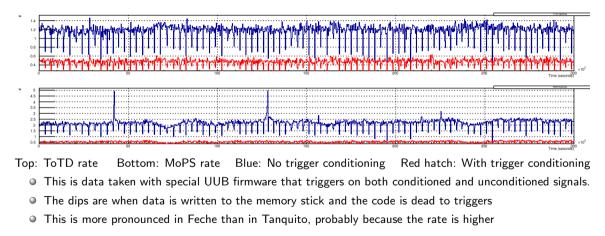
Zoom in on a High Rate Region: Good Trace



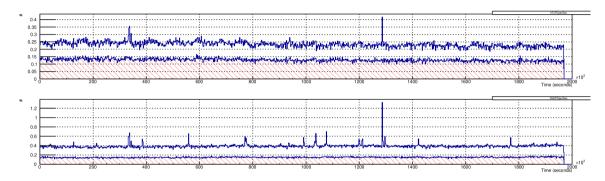
Zoom in on a High Rate Region: A "Bad Trace"



Another Example of a "Bad Trace"



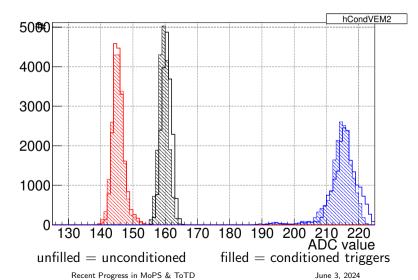
An Example of a "Good Trace"



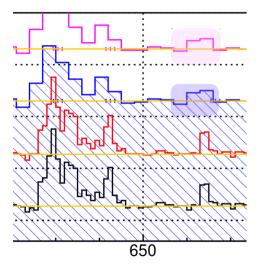
Overview of some Data from Feche

Overview of "Replayed" Data from TanquitoJr

Top: ToTD rate Bottom: MoPS rate Blue: No trigger conditioning Red hatch: With trigger conditioning


- The T2 rate is lower even in "quieter periods" after conditioning in this data.
- Is trigger conditioning too aggressive?
- Does this affect the T3/T4/T5 rate?
- Does this affect the VEM calibration?

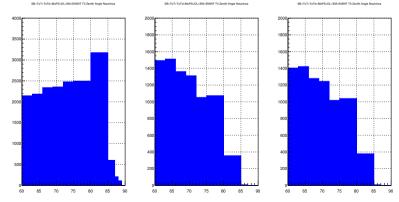
D. Nitz


Some VEM Data from Feche

No significant difference in VEM calibration

Why Is Trigger Rate Lower with Trigger Conditioning?

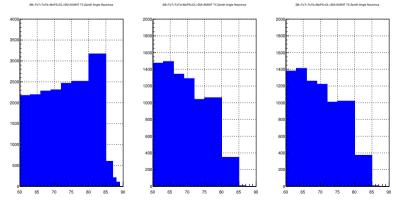
- Negative fluctuation before signal reduced by trigger conditioning reduces MoPS step
- Integrated signal falls just below integral constraint threshold after conditioning
- Are the missing triggers just noise or real signals we want to trigger on?
- Perhaps trigger conditioning is too aggressive?
- Try several alternatives of less aggressive trigger conditioning



- Things tried:
 - || vs && for wings on other side of baseline
 - Tweaking rounding
 - Adding dead band around baseline which trigger conditioner ignores
 - Tracking of baseline sag
- The first 2 tests made insignificant differences
- Unfortunately, I have not yet gotten the Verilog code with the 2nd two tests to work.
 - Verilog does not handle signed registers well; working with negative numbers is quite tricky and is best avoided
 - For example with standard register definitions, 2>1, but also -2>1 because by default all registers are unsigned
- Thus for checking T3/T4/T5s with and without trigger conditioning I use the aggressive algorithm in the following slides
 - Vertical scale is just number of events with no correction for slant depth or zenith angle bin width

Check T3/4/5 Rate with Offline Simulations (3.0 EeV v) without Trigger Conditioning

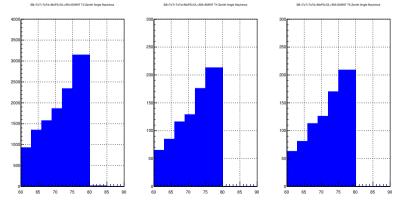
Important: The baselines were obtained using randoms data from Nadia during March 16, 2023 during which lightning was sometimes present.



Recent Progress in MoPS & ToTD

Check T3/4/5 Rate with Offline Simulations and Aggressive Trigger Conditioning (3.0 EeV v)

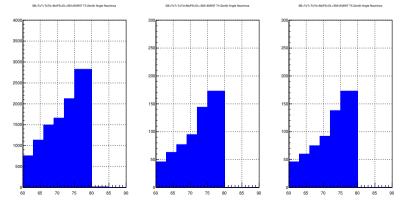
Important: The baselines were obtained using randoms data from Nadia during March 16, 2023 during which lightning was sometimes present.



Recent Progress in MoPS & ToTD

Check T3/4/5 Rate with Offline Simulations (0.1 EeV v) without Trigger Conditioning

Important: The baselines were obtained using randoms data from Nadia during March 16, 2023 during which lightning was sometimes present. Expect some extra triggers due to noise.



Recent Progress in MoPS & ToTD

Check T3/4/5 Rate with Offline Simulations (0.1 EeV v) and Aggressive Trigger Conditioning

Important: The baselines were obtained using randoms data from Nadia during March 16, 2023 during which lightning was sometimes present.

Recent Progress in MoPS & ToTD

- Trigger conditioning removes rate spikes in ToTD and MoPS triggers
 - At least in TanquitoJr and Feche
- ⁽²⁾ Even with very aggressive trigger conditioning:
 - VEM calibration is not affected by trigger conditioning
 - ② Simulated T3/T4/T5 rates not significantly affected in 3.0EeV v simulations
 - ③ Simulated T3/T4/T5 rates only modestly affected in 0.1EeV v simulations.
 - ${\scriptstyle (l) \ }$ This is not surprising since a lower energies there are fewer stations triggered
 - 2 But the number of stations triggered by single muons and small shower remain constant
 - 3 Some of the noise triggers are removed by trigger conditioning