
git clone ��recurse�submodules git@gitlab.iap.kit.edu:auger�observatory/

sandboxes/schimassek�m/noise�analysis.git

-- by M. Schimassek (martin.schimassek@ijclab.in2p3.fr), 31.05.2024 ��

This is a brief introduction to the "noise" analysis shown in commissioning context throughout

the last years. It will make use of the sd-data.

Data: link

Code: repository

References: GAP�2023�022, GAP�2023�015

In this tutorial, we will explore the "noise" of the detectors as measured in the event data. There

has been previous work pointing out 'noise bursts', i.e. limited time periods with elevated noise in

the recorded, that we will try to reproduce here.

For this tutorial, we will use the "noise-analysis" repository that provides simple C�� programs

that read the trace data and extract information about the first 300 bins of the traces. Please

note that this is not a cleaned version for the purpose of this tutorial and as such contains old

prototyping code that we will ignore.

To get the code (with an auger-gitlab account and ssh key), run

As the programs read the sd/adsd files produced by the CDAS programs, we need a CDAS and

corresponding root installation to compile the code.

You can have a look at the env.sh script to see how to set up your environment. The relevant

lines are

i.e. you need to set CDASHOME to be able to find includes and libraries from CDAS, set the

LD_LIBRARY_PATH for linking and source the associated root-installation.

For instructions on how to install CDAS, we refer to ape and CDAS. A hidden requirement is the

installation of boost for the command line options. On Ubuntu systems, you can install it on the

system with

mailto:martin.schimassek@ijclab.in2p3.fr
mailto:martin.schimassek@ijclab.in2p3.fr
https://drive.google.com/drive/folders/1eZmcdLoqItWY1F25u0ommHZptONYfSlE?usp=sharing
https://drive.google.com/drive/folders/1eZmcdLoqItWY1F25u0ommHZptONYfSlE?usp=sharing
https://gitlab.iap.kit.edu/auger-observatory/sandboxes/schimassek-m/noise-analysis
https://gitlab.iap.kit.edu/auger-observatory/sandboxes/schimassek-m/noise-analysis
https://www.auger.org/document-centre2?task=download.send&id=5676:gap2023-022&catid=157
https://www.auger.org/document-centre2?task=download.send&id=5676:gap2023-022&catid=157
https://www.auger.org/document-centre2?task=download.send&id=5659:gap2023-015&catid=157
https://www.auger.org/document-centre2?task=download.send&id=5659:gap2023-015&catid=157

sudo apt�get install libboost�all�dev

iget /pauger/Malargue/Raid/data/Sd/2024/04/sd_2024_04_30_23h55.root

some_existing_folder/

./uub_fadctrace_variance_analysis �i sd_2024_04_30_23h55.root �o

noise_2024_04_30_23h55

or use the version you desire.

To compile the code with the environment set, simple type 'make'. On sufficiently new compilers,

you will see the usual warnings associated to root-5 �TMatrixT�. You can ignore these. There is a

custom warning in one of the applications

which indicates a missing implementation that we do not use in this example.

The data we will use in this tutorial is the trace data from event-data. Thus, we need the event

data to extract the information we are interested in. You can use directly the sd-files as we don't

need the merging information, however, it is also possible to use the merged files ad*.root or

adsd*.root

You can get the data from irods through

or from the google-drive folder of this example. To extract the 'noise' information, we can then

run

This should produce an output file called "noise_2024_04_30_23h55.out". You can find it here if

you are unable to compile or run the code.

For a more comprehensive data set, we can use the first 10 days of May 2024, that data set you

can find pre-prepared here.

We also prepared a data set comprising all (non-special station) set for data from 2023 to April

2024 here.

The data we have extracted from the sd-files are stored in ASCII format and can be easily

understood

https://drive.google.com/file/d/1na7QPWAlNMzA14w9TZ8Cpef6OMtjU4Ql/view?usp=sharing
https://drive.google.com/file/d/1na7QPWAlNMzA14w9TZ8Cpef6OMtjU4Ql/view?usp=sharing
https://drive.google.com/file/d/1XnP39YjxGqm6rpUPDRcrVPLF91xTpkT2/view?usp=sharing
https://drive.google.com/file/d/1XnP39YjxGqm6rpUPDRcrVPLF91xTpkT2/view?usp=sharing
https://drive.google.com/file/d/1Z6CnL4Oe9l6nF_vUxXFqY3cHpx85eePC/view?usp=sharing
https://drive.google.com/file/d/1Z6CnL4Oe9l6nF_vUxXFqY3cHpx85eePC/view?usp=sharing
https://drive.google.com/file/d/1Uv499Ev8MSAaaAaEyhqS1oTK438Yd6D4/view?usp=sharing
https://drive.google.com/file/d/1Uv499Ev8MSAaaAaEyhqS1oTK438Yd6D4/view?usp=sharing

./plot_station_values.py �i ��/moni�data/ssd_rms_max.dat �o ssd_noise ��

column 1 ��zmin 1.5 ��zmax 3

You can see from the first line the "TTree" style column descriptor what the columns are. In

detail, we have the station Id, which for the first entries the same, just like the GPS-second. This

happens because we write one line into this file per PMT-trace and for each event we get 10

ADC-traces. In addition, we extract the noise in the first and last 300 bins. To distinguish the

position in the trace, the last two columns can be used which indicate the bin interval used as

[firstbin, lastbin).

The PMT-number is to be understood as follows: �0, 1, 2� are the LPMT, �3� is the sPMT, �4� is

the SSD�PMT. Numbers larger than 4 are the LG-channels, e.g. �5, 6, 7� are the LG-data from the

LPMTs.

The information extracted per trace is summarized in 4 numbers: "maxPeak" which is the

absolute maximal ADC value seen in the interval, "min" which is the minimal ADC value, "stdev"

which is the standard deviation found for this interval, and "baselineMean" which is simply the

average which can be used as indicator of the baseline.

For analysis of the data, we refer to this jupyter-notebook.

For plotting for the station values extracted at the end of the notebook, you can download the

python script from the google-drive or the given repository together with the station position file

"AllStations.cfg". Then simply run

You should find a plot similar to this:

https://drive.google.com/file/d/1fmDp1L6JfyCp_b4iktK9P5UVssrLMmh2/view?usp=sharing
https://drive.google.com/file/d/1fmDp1L6JfyCp_b4iktK9P5UVssrLMmh2/view?usp=sharing

For more extensive analysis of the noise, you can also have a look at the README of the git-

repository.

For the analysis of the year-long time series we use root, as pandas can be quite RAM-hungry

for such large data sets. You can use a interactive root-session (we recommend root-6� for some

quick analysis of the data, note that reading the GB of data can take several minutes in root (so

in pandas it might be hours).

will lead you to an interesting plot of the noise as function of time in days after 01 Jan 2023 (the

GPS second used in the command line):

To fully understand this plot, we have to remember that a shift in the red dots by 0.1 can be very

significant as it averages a lot of times and all stations. If there is a tail (which you will see in the

2D histograms produced before this plot) it can have stronger implications than the average of

2.1 ADC suggests.

