10 ps: a Challenge for the Future of Positron Emission Tomography

Christian Morel Aix-Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

Positron Emission Tomography (PET)

Positron Emission Tomography (PET)

Sinogram

Positron Emission Tomography (PET)

Reconstructed image

Sinogram

Radial spatial resolution

$$R = a \sqrt{\left(\frac{d}{2}\right)^2 + b^2 + r^2 + (0.0022 D)^2}$$

- *d* Pixel size
- D Ring diameter
- *r* Positron range
- *b* Detector crosstalk
- *a* Image reconstruction algorithm (1,1 1,3)

Spatial resolution at image centre

Backprojection

Tomography and counting statistics

9

SNR and counting statistics

$$SNR = \frac{A}{\Delta A} = \frac{N_{\beta^+}}{\sqrt{N_{\beta^+}}} = \sqrt{N_{\beta^+}}$$
$$\Rightarrow N_{\beta^+} = SNR^2$$
$$N_{evt} = \left(\frac{L}{d}\right)^3 \times SNR^2 \times \left(\frac{L}{d}\right)$$

Improving spatial resolution x 2 \Rightarrow increasing counting statistics x 16 to get unchanged SNR in the reconstructed image voxels

- ✓ scan duration
- ✓ injected activity
 ✓ solid angle
- ✓ crystal thickness (crystal efficiency)

Noise Equivalent Count Rate (NECR)

Inorganic scintillators for PET

	NaI	BGO	BaF ₂	L(Y)SO	LuAP	LaBr ₃
Density (g/cm³)	3.67	7.13	4,88	7.40	8.34	5.3
Effective Z	51	74	53	66	65	52
Photofraction (%)	118	42	19	33	32	14
Decay time (ns)	230	300	0.6	35-45	17	16
Light yield (ph/MeV)	43000	8200	620 1430	28000	11400	60000
			9950			
Peak emission (nm)	415	480	220	420	365	300
			310			
Refraction index	1.85	2.15	1.47	1.82	1.97	1.9

Radial spatial resolution

$$R(s) = a \sqrt{\left(\frac{d}{2}\right)^2 + \frac{(w^2 - d^2)}{D^2}s^2 + b^2 + r^2 + (0.0022 D)^2}$$

- *d* Pixel size
- w Pixels thickness
- D Ring diameter
- r Positron range
- *b* Detector crosstalk
- *a* Image reconstruction algorithm (1,1 1,3)

Total Body-PET EXPLORER scanner

Ring diameter: 78.6 cm Transaxial FOV: 68.6 cm Axial FOV: 194.8 cm CTR: 505 ps FWHM LYSO crystals: 2.76 x 2.76 x 18.1 mm³

of crystals: 564,480 # of SiPMs: 53,760 Coincidence window: 4.5 - 6.9 ns Energy window: 430-645 keV Scatter fraction: 35.8 % Peak NEC: 1.4 Mcps @ 16.8 kBq/mL (NU 2-2012 70 cm) Peak NEC: 1.7 Mcps @ 8.0 kBq/mL (NU 2-2012 175 cm)

Time-Of-Flight (TOF)-PET

Impact of TOF-PET on image SNR

$$N_{\text{evt}} = \left(\frac{L}{d}\right)^3 \times \text{SNR}^2 \times \left(\frac{L}{d}\right)$$

 $N_{\text{TOF}} = \left(\frac{L}{d}\right)^3 \times \text{SNR}^2 \times \left(\frac{\Delta L}{d}\right)$

Impact of TOF-PET on image SNR

$$N_{\text{evt}} = \left(\frac{L}{d}\right)^{3} \times \text{SNR}_{\text{nonTOF}}^{2} \times \left(\frac{L}{d}\right)$$

$$N_{\text{evt}} = \left(\frac{L}{d}\right)^{3} \times \text{SNR}_{\text{TOF}}^{2} \times \left(\frac{\Delta L}{d}\right)$$

$$\left(\frac{\text{SNR}_{\text{TOF}}}{\text{SNR}_{\text{nonTOF}}}\right)^{2} = \frac{2L}{c \times \text{CTR}}$$

$$\boxed{\text{nonTOF}} = \frac{1}{2} \sum_{C \text{ or } C \text{ o$$

17 PHENIICS Fest — May, 16 2024 — Orsay

Aix*Marseille Université

State-of-the-art TOF-PET

Brief history of (TOF&TB-)PET scanners

- 60s: TOF-PET advocated by Anger (LBL), Brownell (MGH) and Budinger (LBL)
- 80s: First TOF-PET scanners for ¹⁵O and ¹³N imaging using CsF/PMT and BaF₂/PMT (PETT (St-Louis), TTV01-3 (Grenoble), TOFPET-I (Houston), SP3000/UW (Seattle)) CTR: 450-750 ps FWHM
- 90s: 3D-PET imaging with nonTOF-PET scanners using BGO/PMT
- Mid-90s: nonTOF-PET/CT scanner using LSO/PMT (4-6 ns coincidence time window)
- Mid-00s: TOF-PET scanners using L(Y)SO/PMT or LaBr₃/PMT CTR: 450-550 ps FWHM
- Mid-10s: TOF-PET scanners using L(Y)SO/SiPM CTR: 300-400 ps FWHM
- End-10s: TOF-PET scanner using LSO/SiPM Biograph Vision CTR: 210 ps FWHM

Total Body (TB)-PET using L(Y)SO/SiPM

Brief history of (TOF&TB-)PET scanners

- 60s: TOF-PET advocated by Anger (LBL), Brownell (MGH) and Budinger (LBL)
- 80s: First TOF-PET scanners for ¹⁵O and ¹³N imaging using CsF/PMT and BaF₂/PMT (PETT (St-Louis), TTV01-3 (Grenoble), TOFPET-I (Houston), SP3000/UW (Seattle)) CTR: 450-750 ps FWHM
- 90s: 3D-PET imaging with nonTOF-PET scanners using BGO/PMT
- Mid-90s: nonTOF-PET/CT scanner using LSO/PMT (4-6 ns coincidence time window)
- Mid-00s: TOF-PET scanners using L(Y)SO/PMT or LaBr₃/PMT CTR: 450-550 ps FWHM
- Mid-10s: TOF-PET scanners using L(Y)SO/SiPM CTR: 300-400 ps FWHM
- End-10s: TOF-PET scanner using LSO/SiPM Biograph Vision CTR: 210 ps FWHM, AFOV: 26.3 cm

Total Body (TB)-PET using L(Y)SO/SiPM uEXPLORER CTR: 505 ps FWHM, AFOV: 194.8 cm PennPET EXPLORER CTR: 250 ps FWHM, AFOV: 140 cm Biograph Vision Quadra CTR: 230 ps FWHM, AFOV: 106 cm

Total Body-PET scanner Biograph Vision Quadra

Ring diameter: 82 cm	# of crystals: 243,200
Transaxial FOV: 78 cm	# of SiPM arrays (16 x 16): 9,728
Axial FOV: 106 cm	Coincidence window: 4.7 ns
CTR: 230 ps FWHM	Energy window: 435-585 keV
LSO crystals:	Scatter fraction: 37 %
3.2 x 3.2 x 20 mm ³	Peak NEC: 3.0 Mcps @ 27.5 kBq/mL (NU 2-2018)

G.A. Prenosil et al., JNM 2021

Time-Of-Flight (TOF)-PET

Resolution in TOF-direction ~1.5 mm Resolution in detector direction 5 mm

true activity

nonTOF backproj

TOF backproj

CENTRE DE PAYSIQUE DES PARTICUES DE MARSEILE CPPPM

Courtesy: J. Nuyts, Univ Leuven

Using only the vertical projection angle

Signal to Noise Ratio (SNR)

CPPN

true activity

10 ps CTR 5 mm detector blur

10 ps CTR 55 mm detector blur

TOF OSEM

Sources possibles de photons prompts (< 1 ns)

The detection chain

State-of-the-art CTR measurements

23

- Detection of scintillation and Cherenkov photons emitted in PWO
- Direct deposition of a photocathode ($n \sim 2,7$) on the crystal surface ($n \sim 2,3$)
- Encapsulation within a Micro-Channel Plate Multiplier Tube (MCP-MT)
- Coincidence Time resolution (CTR) ~20 ps FWHM (exluding MCP-MT)

Reconstruction-free positron emission tomography

0.8

0.6

0.4

0.2

32.9 ps (4.93 mm) FWHM

Count (a.u.)

- Use of Cherenkov light for timing
- > CTR 32.9 ps FWHM (4.93 mm)
- direct Positron Emission Imaging (dPEI)

The 10 ps challenge: a step toward reconstruction-less TOF-PET

Thank you

nonTOF backproj

nonTOF OSEM

10ps TOF backproj

10ps TOF OSEM

