
Multi-band analyses of the bright GRB 230812B and the associated SN2023pel

Thomas Hussenot-Desenonges
IJCLab A2C/OG 2nd year PhD
Supervisors: Patrice Hello & Sarah Antier

PHENIICS Fest 16/05/2024

Gamma-Ray Bursts

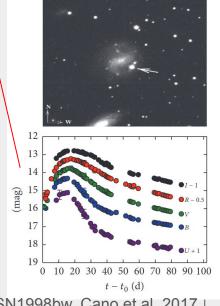
- -Very energetic events, happening since the earliest galaxies
- -About one detected per day

2 categories:

- Short GRBs:
 Merger of compact objects (e.g. neutron stars)
- Long GRBs:
 Collapses of very massive stars

Supernovae

- -Energetic events, mostly in closest few Gigaparsecs
- -About one detected per day


Categories:

- Type la:
 White dwarf accreting enough matter from companion to start runaway nuclear fusion
- Types Ib, Ic, II:
 Core- collapses of massive stars

Gamma-Ray Bursts associated to Supernovae

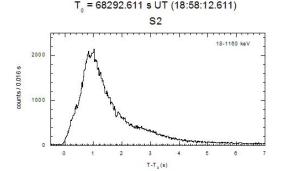
- First detected association is GRB 980425 and SN1998bw
- A dozen confident associations in the last 25 years
- Most events are long core-collapse GRBs with spectral features of Type Ic SNe

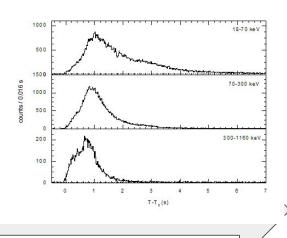
Open question: Are all long GRBs linked to SNe?

SN1998bw, Cano et al. 2017

Long GRBs: Collapses of very massive stars Types Ib, Ic, II: Core- collapses of massive stars

GRB230812B - Timeline

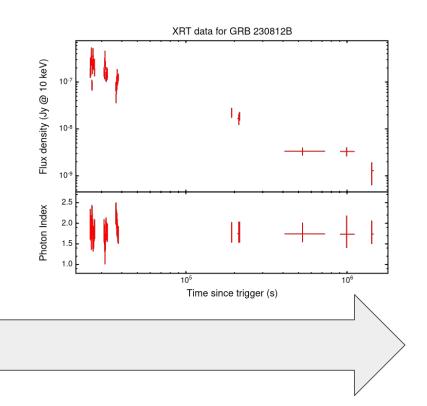

Initial detection of a Gamma-Ray Burst by gamma-ray telescopes in orbit


A lot of energy in few seconds: Top 5 brightest GRB ever

Fluence ([10-1000]keV band) ~ 2.5×10-4 erg cm-2

Very High Energy photons up to 72 GeV

Location constrained within 1 degree

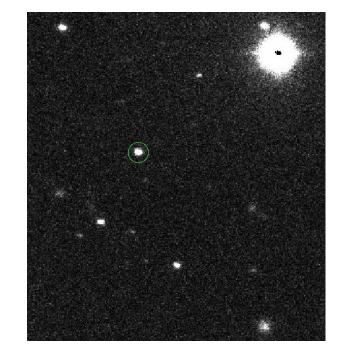


GRB230812B - Timeline

X-ray, UV and Optical telescopes search for a counterpart signal

Uncatalogued X-ray source detected in X-Ray Telescope of the Swift satellite

Improved localisation down to 4 arcseconds


GRB230812B - Timeline

A corresponding optical transient is then discovered at that location

Spectroscopic observations by 10-meter Gran Telescopio Canarias (T0+1.1days)

-> Measured redshift : z ~ 0.360

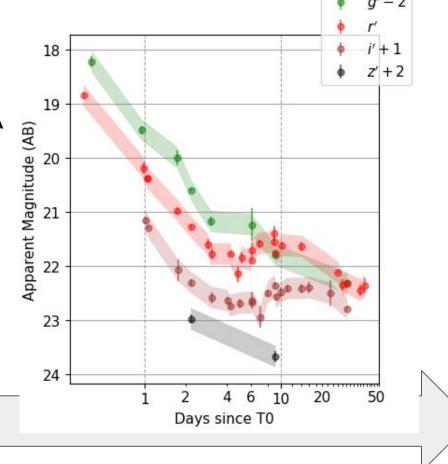
-> Close-by source : 1.98 Gpc

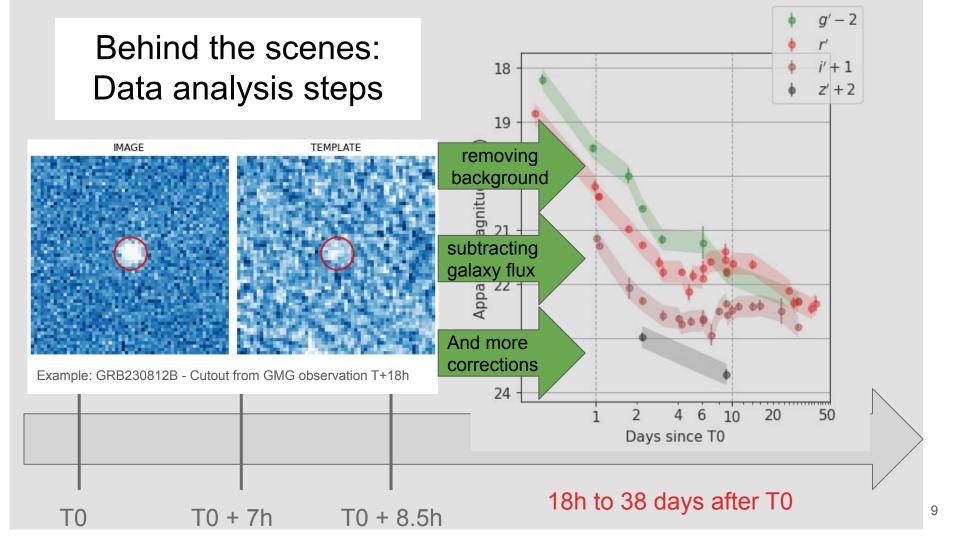
The GRANDMA collaboration

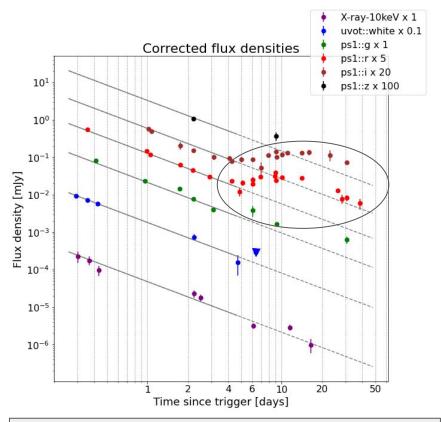
30 telescopes - 23 observatories - 29 institutes/groups - Pl. S. Antier

Following transient sources

- Gravitational waves Counterparts
- Notable Transient phenomena

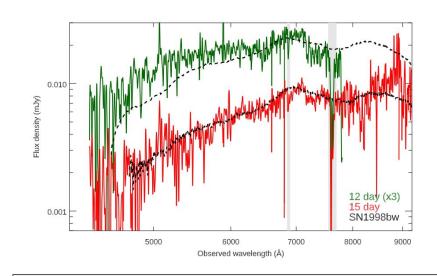

Partner programme with amateur astronomers:


GRB230812B GRANDMA observations


Optical observations with 20 GRANDMA observatories and several amateur astronomers → ~80 images

- + Data from partner observatories
- = Many observations in different optical and infrared filters

18h to 38 days after T0



Fitting the lightcurve with simple empirical afterglow powerlaw model $Fv \propto t^{-\alpha} v^{-\beta}$

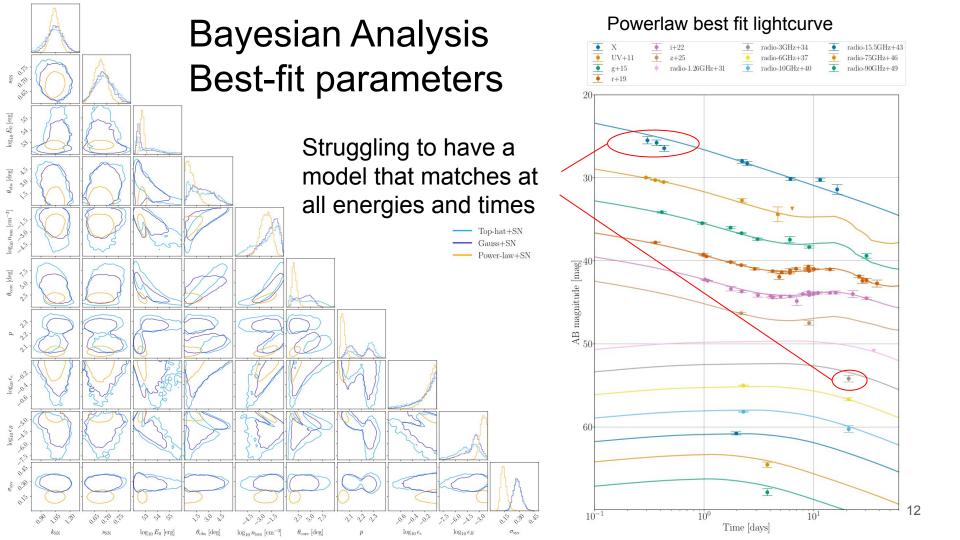
-> SN bump is clearly visible after T+5days

Observing the Supernova

Spectra at 12 and 15 days, GRB afterglow has become negligible under SN component

Spectral features are in good match with other Type Ic SNe: SN2006aj, SN2002ap, SN2005ek, SN1998bw

PHENIICS Fest 16/05/2024

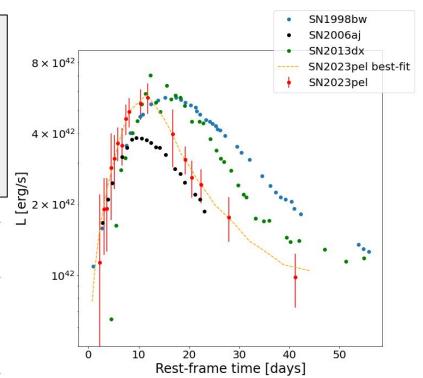

Bayesian Analysis - Finding the best fitting model

Lightcurve models:

- -GRB afterglow: afterglowpy model
- -SN: template based on SN1998bw lightcurve
- -Other astrophysical events (Kilonovae, Collapsars)

The Nuclear Multi-Messenger Astronomy (NMMA) analysis software searches the model that matches best the full observation dataset (Xray, UV, optical, infrared and radio)

-> We confirm that <u>GRB afterglow + SN is the best-match scenario</u>



Comparing the SN to other GRB-associated events

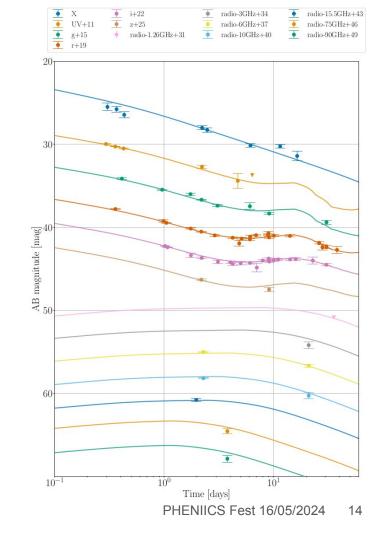
Studying the bolometric lightcurve:

SN2023pel has a similar rising time and brightness to other GRB+SN events, but seems to fade quicker

SN	$L_{\rm max}$ (erg s ⁻¹)	Peak time (d)	Half-max time width (d)	
SN2023pel	5.75×10^{42}	11.6	16.2	
SN1998bw	5.67×10^{42}	15.3	36.0	
SN2006aj	3.80×10^{42}	9.50	26.9	
SN2013dx	7.10×10^{42}	12.3	25.1	

Conclusion

GRB230812B was a bright and rather nearby "long" GRB. Extensive follow-up by GRANDMA and partners in optical and infrared.

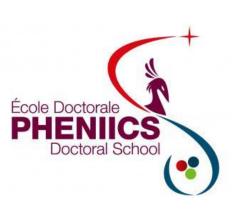

-> Strong association to a supernova component

Adding X, UV and radio we modeled a GRB+SN:

- Type Ic SN parameters, in line with previously studied GRB+SN events
- GRB afterglow, with a power-law jet angular structure. Some parameters (Narrow jet angle, Low density of interstellar medium) unusual for this class of events.

Highlighting limitations of literature models for all-encompassing description

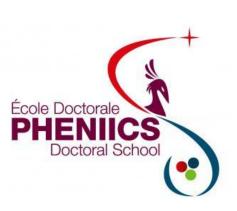
-> Call for further modeling



Thanks for listening!

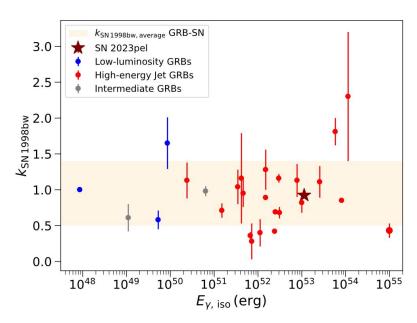
Multi-band analyses of the bright GRB 230812B and the associated SN2023pel

Hussenot-Desenonges et al. MNRAS 530 (2024) 1, 1-19

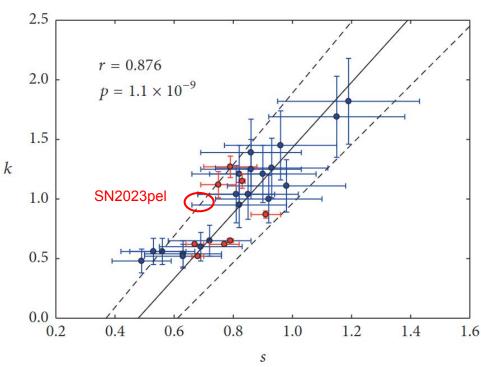


Backup slides

Multi-band analyses of the bright GRB 230812B and the associated SN2023pel



Hussenot-Desenonges et al. MNRAS 530 (2024) 1, 1-19



More comparisons with the GRB+SN population

SN brightness against GRB energy (Srinivasaragavan et al 2023)

SN brightness against SN timescale (Cano et al 2017)

Bayesian Analysis Parameter Estimation

Parameter	Prior	Prior range	Power-law+SN
(log-) Isotropic afterglow energy E_0 [erg]	Uniform	[47, 57]	$52.76^{+0.28}_{-0.26}$ $-2.16^{+1.21}_{-1.30}$
(log-) Ambient medium's density n_{ism} [cm ⁻³]	Uniform	[-6, 3]	$-2.16^{+1.21}_{-1.30}$
(log-) Energy fraction in electrons $\epsilon_{\rm e}$	Uniform	[-5, 0]	$-0.09^{+0.09}_{-0.23}$
(log-) Energy fraction in magnetic field $\epsilon_{\rm B}$	Uniform	[-10, 0]	$-2.44^{+0.83}_{-0.83}$
Electron distribution power-law index p	Uniform	[2.01, 3]	$2.05^{+0.04}_{-0.02}$
Viewing angle $\theta_{\rm obs}$ [degrees]	$\mathcal{N}(0, \theta_{\text{core}}^2)$	_	$0.75^{+1.27}_{-0.75}$
Jet core's opening angle θ_{core} [degrees]	Uniform	[0.6, 18]	$1.70^{+1.00}_{-0.71}$
"Wing" truncation angle θ_{wing} [degrees]	Uniform	[0.6, 45]	$20.82^{+18.94}_{-11.93}$
Power-law structure index b	Uniform	[0.1, 7]	$1.66^{+0.51}_{-0.42}$
Angle ratio $\theta_{\rm obs}/\theta_{\rm core}$	2-	_	$0.44^{+0.76}_{-0.44}$
Supernova boost k_{SN}	Uniform	[0.01, 100]	$1.04^{+0.09}_{-0.09}$
Supernova stretch s _{SN}	Uniform	[0.1, 5.0]	$0.68^{+0.05}_{-0.05}$
Systematic error $\sigma_{\rm sys}$	LogUniform	[0.01, 2.0]	$0.14^{+0.06}_{-0.05}$

Supernova parameters: quicker but about as bright as SN1998bw, consistent with the values estimated in the ZTF paper

SN peak at 22.0 in r and 22.8 in i at ~16 days after trigger, consistent with parameter space of strong GRB-SN associations

Low ISM density is uncommon for case where SN implies a massive progenitor

Narrow core angle, high electron energy fraction