Three-mirror cavity for quantum noise reduction of future gravitational wave detectors

1. Context

2. Three-mirror cavities optics

3. Conclusion

2024/05/16

Gravitational waves

Accelerated masses & propagation through space-time

Gravitational waves

Stretch / compress orthogonal directions

Accelerated masses & propagation through space-time

Paul Stevens

Context

Gravitational waves

Stretch / compress orthogonal directions

Accelerated masses & propagation through space-time

Detection via Michelson interferometer

Context

Quantum noise

Squeezed states of light

Context

Context

 $\frac{\pi c}{\sqrt{2LF(r_i)}}$ F: finesse of the cavity (depends on mirrors reflectivities r.)

Context

on mirrors reflectivities r_i)

Context

2024/05/16

Context

Frequency dependent squeezing & three-mirror cavity

Context

Frequency dependent squeezing & three-mirror cavity

Context

Three-mirror cavities optics

2024/05/16

Three-mirror cavity

- Simple Fabry-Perot cavity + third, "middle" mirror (two "sub" cavities)
- Three optical resonators
- Despite simple configuration, **non-trivial behavior**

Fabry-Perot cavity

1 - Modelisation	2 - Simulations	

1 - Modelisation	2 - Simulations
A - Fields propagation through the system: $ \begin{aligned} $	

1 - Modelisation	2 - Simulations	
<u>A - Fields propagation through the system:</u>		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
k: wave-vector; \boldsymbol{r}_i and \boldsymbol{t}_i : reflection and transmission coefficients of mirror "i"		
<u>B - Global reflection and transmission coefficients:</u>		
$\begin{aligned} r &= \frac{\psi_{Ref}}{\psi_{In}} = \frac{r_1 e^{2ik(L_1 + L_2)} - r_1 r_2 r_3 e^{2ikL_1} - r_2(r_1^2 + t_1^2) e^{2ikL_2} + r_3(r_1^2 + t_1^2)(r_2^2 + t_2^2)}{e^{2ik(L_1 + L_2)} - r_1 r_2 e^{2ikL_2} - r_2 r_3 e^{2ikL_1} + r_1 r_3(r_2^2 + t_2^2)} \\ t &= \frac{\psi_{Trans}}{\psi_{In}} = \frac{-t_1 t_2 t_3 e^{ik(L_1 + L_2)}}{e^{2ik(L_1 + L_2)} - r_1 r_2 e^{2ikL_2} - r_2 r_3 e^{2ikL_1} + r_1 r_3(r_2^2 + t_2^2)} \end{aligned}$		

1 - Modelisation	2 - Simulations
<u>A - Fields propagation through the system:</u>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
k: wave-vector; \boldsymbol{r}_i and \boldsymbol{t}_i : reflection and transmission coefficients of mirror "i"	
<u>B - Global reflection and transmission coefficients:</u>	
$\begin{aligned} r &= \frac{\psi_{Ref}}{\psi_{In}} = \frac{r_1 e^{2ik(L_1 + L_2)} - r_1 r_2 r_3 e^{2ikL_1} - r_2 (r_1^2 + t_1^2) e^{2ikL_2} + r_3 (r_1^2 + t_1^2) (r_2^2 + t_2^2)}{e^{2ik(L_1 + L_2)} - r_1 r_2 e^{2ikL_2} - r_2 r_3 e^{2ikL_1} + r_1 r_3 (r_2^2 + t_2^2)} \\ t &= \frac{\psi_{Trans}}{\psi_{In}} = \frac{-t_1 t_2 t_3 e^{ik(L_1 + L_2)}}{e^{2ik(L_1 + L_2)} - r_1 r_2 e^{2ikL_2} - r_2 r_3 e^{2ikL_1} + r_1 r_3 (r_2^2 + t_2^2)} \end{aligned}$	
<u>C</u> - Cavity behavior: complex combination of configuration parameters → simulations	

To characterize the system: <u>how the global transmissivity and reflectivity of a three-mirror</u> <u>cavity change when we modify the configuration ?</u>

2 - Simulations

- Implement global reflection and transmission coefficients in a code
- Parameters to change:
 - Laser wavelength (wave-vector)
 - First, second and third mirrors transmission coefficients
 - L₁ and L₂ distances

The doubling of transmission peak

The doubling of transmission peak

A <u>three-mirror cavity</u> can show off a <u>doubling of the</u> <u>transmission peak</u>

The doubling of transmission peak

A <u>three-mirror cavity</u> can show off a <u>doubling of the</u> <u>transmission peak</u>

Mirrors transmissivity

Microscopic mirrors spacing

Asymmetrical variation of maxima spacing (same power in each maxima)

Fixed parameters: $L_2 = 1m$, $R_1 = R_2 = R_3 = 0.9$

Three-mirror cavities optics

Mirrors transmissivity (again)

2024/05/16

2024/05/16

- Simulations of three-mirror cavity optics:
 - Doubling of resonance peak
 - Position, height and sharpness of "double-peak" maxima almost completely modulable by changing the cavity configuration
 ⇒ Quantum noise reduction for next GW detectors!
 - Need to pay attention to **cavity stability** (not presented here)
- <u>Currently:</u> implementation of a **meter-scale prototype on CALVA platform,** IJCLab
- <u>Next step:</u> simulations of squeezing properties in a three-mirror cavity

Thank you !

2024/05/16

Frequency dependant squeezing for next generation of GW detectors

Frequency dependant squeezing in current detectors:

⇒ Squeezed beam filtered with a "simple" Fabry-Perot cavity → allow to reduce QN at all frequencies

⇒ Is it possible to develop a system for more complex
 QN shape, Einstein Telescope - Low Frequency
 (ET-LF) ?

⇒ Current proposition: two Fabry-Perot cavities in series

Problematic:

⇒ <u>Replace the two Fabry-Perot cavities with a</u> <u>three-mirror cavity ?</u>

To understand the squeezing behavior in a three-mirror cavity, we **need first to understand its optical behavior.**

Condition for doubling of transmission peak

Macroscopic mirrors spacing

2024/05/16