Investigating the modelling of delayed gamma from nuclear fission with the help of multi-dimensional gamma spectroscopy

Matteo Ballu

May 16th 2024

[Context and objective](#page-2-0)

[Experimental setup and previous analysis](#page-6-0)

[Building a new analysis tool with machine learning](#page-17-0)

[Extras](#page-41-0)

[Context and objective](#page-2-0)

[Experimental setup and previous analysis](#page-6-0)

[Building a new analysis tool with machine learning](#page-17-0)

[Extras](#page-41-0)

Neutron induced fission

Gamma rays : photon produced by the radioactive decay of a nucleus

energy : 100 keV -8 MeV

Beta decay for neutron-rich nuclei

$$
\beta^- \,\, {\sf decay}:
$$

$$
\frac{A}{Z}X \longrightarrow \frac{A}{Z+1}Y + e^- + \bar{\nu}_e
$$

$$
Q_{\beta}=E_{e^-}+E_{\bar{\nu}_e}+E^*
$$

 I_β gives the probability that the Y nucleus is produced at a given excited state

 \blacktriangleright I_B can be estimate from I_n thanks to gamma spectroscopy

▶ pandemonium effect : missing transitions and bias in intensities

Objective of the thesis

provide experimental verification of fission-delayed gamma-ray modelling Include:

• fission fragment deexcitation

but strongly depends on the *speed* of the analysis of the data we have

[Context and objective](#page-2-0)

[Experimental setup and previous analysis](#page-6-0)

[Building a new analysis tool with machine learning](#page-17-0)

[Extras](#page-41-0)

The neutron source

- ▶ experimental nuclear reactor
- ▶ very high flux : 10^8 s⁻¹ cm⁻² at the target

The neutron source

- ▶ experimental nuclear reactor
- ▶ very high flux : 10^8 s⁻¹ cm⁻² at the target

The active target

uranium 235 diluted in a scintillating liquid Interest : gamma emitted after a fission can be tagged

The neutron source

- ▶ experimental nuclear reactor
- ▶ very high flux : 10^8 s⁻¹ cm⁻² at the target

The active target

uranium 235 diluted in a scintillating liquid Interest : gamma emitted after a fission can be tagged

The detection system (FIPPS gamma-ray spectrometer)

Composed of two parts :

- ▶ 16 high-purity germanium clover detectors (HPGe)
- \triangleright Photo-multiplier : collect the light produced at the target

(a) 8 of the 16 germanium spectrometers (b) The target and the light collecting system

Pre-analysis

Raw data treatment

- ▶ Validation of the fission tag (other PhD student) √
- Energy calibration (other PhD student and myself) √
- ▶ Time calibration (other PhD student) √
- ▶ Produce the coincidence matrix and cube √

Pre-analysis

Raw data treatment

- ▶ Validation of the fission tag (other PhD student) √
- Energy calibration (other PhD student and myself) √
- ▶ Time calibration (other PhD student) √
- ▶ Produce the coincidence matrix and cube √

Detector GEANT4 simulation

needed to estimate summation effects

Pre-analysis

Raw data treatment

- ▶ Validation of the fission tag (other PhD student) √
- ▶ Energy calibration (other PhD student and myself) √
- ▶ Time calibration (other PhD student) √
- ▶ Produce the coincidence matrix and cube √

Detector GEANT4 simulation

▶ needed to estimate summation effects

Detector properties

- ▶ calibration source : europium 152
- ▶ relies on a good knowledge of the source's activity which was not easy to estimate
- **•** relative uncertainty around 1%

What has been done

- \triangleright Independent fission yield for a dozen of fission fragments \triangleq
- \triangleright the analysis relies extensively on peak fitting on 2d or 3d spectra to extract the number of measured gamma for a given transition
- \triangleright the current methods are time consuming and the uncertainty can be large

^aThe nuclear fission process in the light of prompt gamma-rays : measurement of thermal fission yields of U-235 on the FIPPS spectrometer, P. Herran (2023)

Limitations

- \triangleright we want to analyse hundreds of peaks with a good control on the uncertainty
- ▶ an automatic (or at least semi-automatic) procedure would be welcomed

[Context and objective](#page-2-0)

[Experimental setup and previous analysis](#page-6-0)

[Building a new analysis tool with machine learning](#page-17-0)

[Extras](#page-41-0)

The motto of every programmer

Spend 1 month doing a task manually

Lose 6 months trying to automate it

1. Decide on a problem : what are we modeling ? what is the task we want to solve ?

- 1. Decide on a problem : what are we modeling ? what is the task we want to solve ?
- 2. Curate data : what data will inform the model ? This is the hard part

- 1. Decide on a problem : what are we modeling ? what is the task we want to solve ?
- 2. Curate data : what data will inform the model ? This is the hard part
- 3. Design an architecture : CNN ? RNN ? Auto encoder ? This is the fun part

- 1. Decide on a problem : what are we modeling ? what is the task we want to solve ?
- 2. Curate data : what data will inform the model ? This is the hard part
- 3. Design an architecture : CNN ? RNN ? Auto encoder ? This is the fun part
- 4. Craft a loss function : what models are "good" ?

- 1. Decide on a problem : what are we modeling ? what is the task we want to solve ?
- 2. Curate data : what data will inform the model ? This is the hard part
- 3. Design an architecture : CNN ? RNN ? Auto encoder ? This is the fun part
- 4. Craft a loss function : what models are "good" ?
- 5. Employ optimization : what algorithms to train the model ?

- 1. Decide on a problem : what are we modeling ? what is the task we want to solve ?
- 2. Curate data : what data will inform the model ? This is the hard part
- 3. Design an architecture : CNN ? RNN ? Auto encoder ? This is the fun part
- 4. Craft a loss function : what models are "good" ?
- 5. Employ optimization : what algorithms to train the model ?

We are physicists, how can we introduce some physics ?

Which data to train the model ?

Problem

There is no labeled data available

Solution

We simulate our own data : synthetic data set

- ▶ Pro : full control
- \triangleright Con : possible bias and missing things

New problem

How to truthfully reproduce the data we observe ?

Synthetic dataset : an example

Figure: Example of a synthetic histogram with one peak with it corresponding mask (right)

The architecture : inputs and outputs

Figure: Inputs and outputs of the neural network

The architecture : the network

Figure: One of the implemented architecture. Inspired from Xie et al

Two tasks : find the peaks locations and intensities

Two tasks : find the peaks locations and intensities

Notations :

- $\hat{y} = (\hat{y}_{ij})$: output of the model
- $y = (y_{ij})$: the expected output

• $\mathcal{I} = \{(i, j) | y_{ij} > 0\}$ • $\hat{\mathcal{I}} = \{(i, j) | \hat{y}_{ij} > 0\}$

Two tasks : find the peaks locations and intensities

Notations :

- $\hat{y} = (\hat{y}_{ij})$: output of the model
- $y = (y_{ij})$: the expected output

And $\mathcal{F} = \hat{\mathcal{I}} \setminus \mathcal{I}$ the indexes of false positives

• $\mathcal{I} = \{(i, j) | y_{ij} > 0\}$ • $\hat{\mathcal{I}} = \{(i, j) | \hat{y}_{ij} > 0\}$

Two tasks : find the peaks locations and intensities

Notations :

- $\hat{y} = (\hat{y}_{ij})$: output of the model
- $y = (y_{ij})$: the expected output

•
$$
\mathcal{I} = \{(i, j) | y_{ij} > 0\}
$$

\n• $\hat{\mathcal{I}} = \{(i, j) | \hat{y}_{ij} > 0\}$

And $\mathcal{F} = \hat{\mathcal{I}} \setminus \mathcal{I}$ the indexes of false positives

$$
\mathcal{L}(y, \hat{y}, \boldsymbol{\theta}) = \mathcal{L}_{\mathcal{I}}(y, \hat{y}, \boldsymbol{\theta}) + \lambda \cdot \mathcal{L}_{\mathcal{F}}(y, \hat{y}, \boldsymbol{\theta})
$$
(1)

$$
\mathcal{L}_{\mathcal{I}}(y, \hat{y}, \boldsymbol{\theta}) = \sum_{\mathcal{I}} (\hat{y}_{ij} - y_{ij})^2 \quad \mathcal{L}_{\mathcal{F}}(y, \hat{y}, \boldsymbol{\theta}) = \text{card}(\mathcal{F})
$$

- ▶ input "augmented" with prior information on the peaks positions
- ▶ 2 architectures implemented using PyTorch
- ▶ models train on GPU on the CCIN2P3

What metrics to measure the accuracy of the neural network ?

- ▶ Relative error : $\frac{y-\hat{y}}{y}$ where y is the expected peak intensity
- \blacktriangleright number of false positive

Figure: Distribution of the relative error for the test set

Question : what did we miss with this model ?

Uncertainties in the inputs

statistical variation of the content of each bin in the 2d spectra

Uncertainties in the inputs

statistical variation of the content of each bin in the 2d spectra

Uncertainties in the outputs

statistical variation of the number of gamma produced and detected

Uncertainties in the inputs

statistical variation of the content of each bin in the 2d spectra

Uncertainties in the outputs

statistical variation of the number of gamma produced and detected

Confidence of the model

uncertainties in the prediction of the neural network

Conclusion

What has be done so far ?

- ▶ FIPPS raw data treatment and determination of the efficiency of the FIPPS spectrometer with a relative uncertainty around 1%
- \triangleright building of a generator of synthetic data to train and test machine learning models
- ▶ implementation, training and testing of two architectures of CNN

What's next ?

- \blacktriangleright uncertainty quantification
- ▶ test the robustness of the neural network
- ▶ test the neural network on real data and compare with classic fit method
- ▶ analysis of the FIPPS data

[Context and objective](#page-2-0)

[Experimental setup and previous analysis](#page-6-0)

[Building a new analysis tool with machine learning](#page-17-0)

[Extras](#page-41-0)

Objective

We want to measure the independent fission yield of tellurium 136.

How ?

by counting the number of gamma rays emitted by a 136 Te nucleus and measured by the spectrometer.

Figure: Energy and transition for the first two levels of $136T_{\text{P}}$

Aperçu de spectre 1d

Figure: Zoom around 610 keV on the one full fission events spectrum from FIPPS

Coincidence matrix

Figure: Region around the peak of interest on the coincidence matrix for fission events

Example of a fit of a peak on the matrix

▶ Required complex fit model ▶ Goodness-of-fit difficult to estimate

Projection and fit

Figure: Projection of the previous histogram after applying a selection on the y-axis between 421 and 424 keV

- ▶ Détection de pics : [Kensert et al. 2022](#page-49-0) (chromatographie)
- ▶ Ajustement de pics en 1d : [Park et al. 2021](#page-49-1) (photo émission), [Abdel-Aal](#page-48-0) [2002](#page-48-0)
- ▶ ML et spectroscopie gamma : [Kamuda et al. 2020,](#page-48-1) [Daniel et al. 2020](#page-48-2)
- ▶ architectures : U-Net [Ronneberger et al. 2015,](#page-49-2) SE (Squeeze and Excitation)

References I

- R. E. Abdel-Aal. Comparison of Algorithmic and Machine Learning Approaches for the Automatic Fitting of Gaussian Peaks. Neural Computing & Applications, 11(1):17–29, June 2002. ISSN 0941-0643, 1433-3058. doi: 10.1007/s005210200012. URL <http://link.springer.com/10.1007/s005210200012>.
- G. Daniel, F. Ceraudo, O. Limousin, D. Maier, and A. Meuris. Automatic and Real-Time Identification of Radionuclides in Gamma-Ray Spectra: A New Method Based on Convolutional Neural Network Trained With Synthetic Data Set. IEEE Transactions on Nuclear Science, 67(4):644–653, Apr. 2020. ISSN 0018-9499, 1558-1578. doi: 10.1109/TNS.2020.2969703. URL <https://ieeexplore.ieee.org/document/8970571/>.
- M. Kamuda, J. Zhao, and K. Huff. A comparison of machine learning methods for automated gamma-ray spectroscopy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 954:161385, Feb. 2020. ISSN 01689002. doi: 10.1016/j.nima.2018.10.063. URL <https://linkinghub.elsevier.com/retrieve/pii/S0168900218313779>.
- A. Kensert, E. Bosten, G. Collaerts, K. Efthymiadis, P. Van Broeck, G. Desmet, and D. Cabooter. Convolutional neural network for automated peak detection in reversed-phase liquid chromatography. Journal of Chromatography A, 1672:463005, June 2022. ISSN 00219673. doi: 10.1016/j.chroma.2022.463005. URL <https://linkinghub.elsevier.com/retrieve/pii/S0021967322002035>.
- S.-H. Park, H. S. Park, H. Lee, and H.-S. Kim. Iterative peak-fitting of frequency-domain data via deep convolution neural networks. Journal of the Korean Physical Society, 79(12): 1199–1208, Dec. 2021. ISSN 0374-4884, 1976-8524. doi: 10.1007/s40042-021-00346-1. URL <http://arxiv.org/abs/2107.04287>. arXiv:2107.04287 [cond-mat].
- O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. In N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, editors, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, pages 234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4_28.