
Investigating the modelling of delayed gamma
from nuclear fission with the help of

multi-dimensional gamma spectroscopy

Matteo Ballu

May 16th 2024



Table of Contents

Context and objective

Experimental setup and previous analysis

Building a new analysis tool with machine learning

Extras

Matteo Ballu May 16th 2024 2 / 33



Table of Contents

Context and objective

Experimental setup and previous analysis

Building a new analysis tool with machine learning

Extras

Matteo Ballu Context and objective May 16th 2024 3 / 33
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Beta decay for neutron-rich nuclei

β− decay :

A
ZX −→ A

Z+1Y+ e− + ν̄e

Qβ = Ee− + Eν̄e + E∗

Iβ gives the probability that the
Y nucleus is produced at a given
excited state

Initial neutron-rich
nucleus

...

Energy

Mass
number
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How to get Iβ ?

▶ Iβ can be estimate from Iγ thanks to gamma spectroscopy
▶ pandemonium effect : missing transitions and bias in intensities

Objective of the thesis
provide experimental verification of fission-delayed gamma-ray modelling
Include:
▶ beta decay process
▶ fission fragment deexcitation

but strongly depends on the speed of the analysis of the data we have
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Description of the experimental setup

The neutron source
▶ experimental nuclear reactor
▶ very high flux : 108 s−1 cm−2 at the target

The active target
uranium 235 diluted in a scintillating liquid
Interest : gamma emitted after a fission can be tagged

The detection system (FIPPS gamma-ray spectrometer)
Composed of two parts :
▶ 16 high-purity germanium clover detectors (HPGe)
▶ Photo-multiplier : collect the light produced at the target
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Description of the experimental setup

(a) 8 of the 16 germanium spectrometers (b) The target and the light collecting system
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Pre-analysis

Raw data treatment
▶ Validation of the fission tag (other PhD student) ✓

▶ Energy calibration (other PhD student and myself) ✓

▶ Time calibration (other PhD student) ✓

▶ Produce the coincidence matrix and cube ✓

Detector GEANT4 simulation
▶ needed to estimate summation effects

Detector properties
▶ dead time ✓

▶ efficiency ✓
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Efficiency

▶ calibration source :
europium 152

▶ relies on a good
knowledge of the
source’s activity which
was not easy to
estimate

▶ relative uncertainty
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Previous analysis

What has been done
▶ Independent fission yield for a dozen of fission fragments a

▶ the analysis relies extensively on peak fitting on 2d or 3d spectra to extract
the number of measured gamma for a given transition

▶ the current methods are time consuming and the uncertainty can be large
aThe nuclear fission process in the light of prompt gamma-rays : measurement of thermal

fission yields of U-235 on the FIPPS spectrometer, P. Herran (2023)

Limitations
▶ we want to analyse hundreds of peaks with a good control on the uncertainty
▶ an automatic (or at least semi-automatic) procedure would be welcomed
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The motto of every programmer
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How to build a machine learning model ?

1. Decide on a problem : what are we modeling ? what is the task we want to
solve ?

2. Curate data : what data will inform the model ? This is the hard part
3. Design an architecture : CNN ? RNN ? Auto encoder ? This is the fun

part
4. Craft a loss function : what models are "good" ?
5. Employ optimization : what algorithms to train the model ?

We are physicists, how can we introduce some physics ?
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Which data to train the model ?

Problem
There is no labeled data available

Solution
We simulate our own data : synthetic data set
▶ Pro : full control
▶ Con : possible bias and missing things

New problem
How to truthfully reproduce the data we observe ?
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Synthetic dataset : an example

Figure: Example of a synthetic histogram with one peak with it corresponding mask (right)
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The architecture : inputs and outputs
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(a) Input : histogram with one or several peaks
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(b) Expected outputs : peaks positions and intensities

Figure: Inputs and outputs of the neural network
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The architecture : the network

Figure: One of the implemented architecture. Inspired from Xie et al
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Loss function

Two tasks : find the peaks locations and intensities

Notations :

• ŷ = (ŷij) : output of the model
• y = (yij) : the expected output

• I = {(i, j) | yij > 0}
• Î = {(i, j) | ŷij > 0}

And F = Î \ I the indexes of false positives

L(y, ŷ, θ) = LI(y, ŷ, θ) + λ · LF(y, ŷ, θ) (1)

LI(y, ŷ, θ) =
∑
I
(ŷij − yij)

2 LF(y, ŷ, θ) = card(F)
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Details

▶ input "augmented" with prior information on the peaks positions
▶ 2 architectures implemented using PyTorch
▶ models train on GPU on the CCIN2P3

Matteo Ballu Building a new analysis tool with machine learning May 16th 2024 21 / 33



First results

What metrics to measure the
accuracy of the neural network ?

▶ Relative error : y−ŷ
y

where
y is the expected peak
intensity

▶ number of false positive
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Figure: Distribution of the relative error for the test set
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Question : what did we miss with this model ?

Uncertainties in the inputs
statistical variation of the content of each bin in the 2d spectra

Uncertainties in the outputs
statistical variation of the number of gamma produced and detected

Confidence of the model
uncertainties in the prediction of the neural network
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Conclusion

What has be done so far ?
▶ FIPPS raw data treatment and determination of the efficiency of the FIPPS

spectrometer with a relative uncertainty around 1%

▶ building of a generator of synthetic data to train and test machine learning
models

▶ implementation, training and testing of two architectures of CNN

What’s next ?
▶ uncertainty quantification
▶ test the robustness of the neural network
▶ test the neural network on real data and compare with classic fit method
▶ analysis of the FIPPS data
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136Te levels

Objective
We want to measure the independent
fission yield of tellurium 136.

How ?
by counting the number of gamma rays
emitted by a 136Te nucleus and
measured by the spectrometer.

Figure: Energy and transition for the first two levels of
136Te
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Aperçu de spectre 1d

Figure: Zoom around 610 keV on the one full fission events spectrum from FIPPS
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Coincidence matrix
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Figure: Region around the peak of interest on the coincidence matrix for fission events
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Example of a fit of a peak on the matrix

▶ Required complex fit model
▶ Goodness-of-fit difficult to

estimate
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Projection and fit
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Figure: Projection of the previous histogram after applying a selection on the y-axis between 421 and 424 keV
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What already exist

▶ Détection de pics : Kensert et al. 2022 (chromatographie)
▶ Ajustement de pics en 1d : Park et al. 2021 (photo émission), Abdel-Aal

2002
▶ ML et spectroscopie gamma : Kamuda et al. 2020, Daniel et al. 2020
▶ architectures : U-Net Ronneberger et al. 2015, SE (Squeeze and Excitation)
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