



# Studying structure near the neutron emission threshold using the detector TETRA at ALTO

# Emile Cantacuzène

David Verney

Team FIIRST



- I. Structure near the neutron emission threshold
- **II. Experimental setup**
- III. Pn measurement of 84Ga
- IV. Ring ratio method to measure mean neutron energy



#### **Beta-delayed neutron emission**



•  $Q_{\beta-n} = Q_{\beta} - S_n$  Available energy for neutrons

•  $P_n$ : Probability for the daughter nucleus to emit at least one neutron after the beta decay

$$P_n = P_{1n} + P_{2n} + \dots \neq < n > = P_{1n} + 2P_{2n} + \dots$$

#### The statistical models

Hardy et al. "The essential decay of pandemonium: β-Delayed neutrons" 1977



16/05/2024

PHENIICS FEST 2024

4





- Better results for integrated properties in N = 50 region
- No overestimation of the population of levels under  $S_n$

Statistical and Non Statistical Models for Delayed Neutron Emission : Application to nuclei near A=90 Z.M. De Oliveira (1980)

![](_page_5_Picture_0.jpeg)

#### **Experimental setup**

## ALTO - LEB

## Neutron counter : TETRA

![](_page_5_Figure_4.jpeg)

Beam production using ISOL technique

- Photofission
- Laser ionization
- Mass separation

![](_page_5_Figure_9.jpeg)

![](_page_5_Picture_10.jpeg)

 $^{3}$ He + n  $\rightarrow$   $^{3}$ H + p + 765 keV

Around 5400 barns at thermal energies

![](_page_6_Picture_0.jpeg)

#### Calibration isotope : 82Ga

![](_page_6_Figure_2.jpeg)

![](_page_7_Picture_0.jpeg)

#### 84Ga data analysis

![](_page_7_Figure_2.jpeg)

![](_page_7_Figure_3.jpeg)

![](_page_7_Figure_4.jpeg)

![](_page_8_Picture_0.jpeg)

#### **Geant4 TETRA simulation**

![](_page_8_Picture_2.jpeg)

High energy threshold : Sparks, alphas, neutrons

![](_page_8_Figure_4.jpeg)

Low energy threshold: gamma pile-up, noise

Low energy tail

Events were the secondary particles left the cell before depositing all their energy

\*Thermal neutrons physics list included

![](_page_9_Picture_0.jpeg)

#### **Different energy distributions**

![](_page_9_Figure_2.jpeg)

« Evaluation and Application of Delayed Neutron Precursor Data » Michaele Clarice Brady

![](_page_9_Figure_4.jpeg)

Maxwellian approximation -> Parameter : Temperature

\*S.-T. Park, "Neutron Energy Spectra of 252 Cf, Am-Be source and of the D(d,n)3 He Reaction,"

![](_page_10_Picture_0.jpeg)

#### **TETRA efficiency per ring**

![](_page_10_Figure_2.jpeg)

Efficiency as function of Maxwellian temperature parameter

Ring ratios as function of Maxwellian temperature parameter

- The efficiency per ring changes with the neutron energy
- Can a link between ring efficiency and mean neutron energy be made ?

![](_page_11_Picture_0.jpeg)

#### **Different energy distributions**

![](_page_11_Figure_2.jpeg)

0.93 MeV mean energy

2.1 MeV mean energy

![](_page_12_Picture_0.jpeg)

#### Coming up

#### MONSTER @ ALTO

> Structure installation in Juin 2024

> Experiment MONSTER + BEDO planned in Autumn 2024

![](_page_12_Picture_5.jpeg)

![](_page_13_Picture_0.jpeg)

# Thank you for your attention

![](_page_14_Picture_0.jpeg)

# Back up slides

![](_page_15_Picture_0.jpeg)

The microscopic point of view

### Galium (Z=31) systematics

![](_page_15_Figure_3.jpeg)

Verney et al. "Pygmy Gamow-Teller resonance in the N = 50 region: New evidence from staggering of β-delayed neutron-emission probabilities" 2017

![](_page_15_Picture_5.jpeg)