

Lattice Design and Beam Optics Optimization of the PERLE Facility

PERLE

16 - 17 May 2024

Rasha ABUKESHEK (2nd year PhD)

Supervision: Achille STOCCHI & Hadil ABUALROB

rasha.abukeshek@ijclab.in2p3.fr

Introduction

ERL and Energy Recuperation

PERLE @ Orsay

PERLE Lattice and Optics Specifications

Magnet Design

Dipole Magnets

Quadrupole Magnets

Study of PERLE Lattice Errors

- Misalignment Errors
- Lattice Correction

Introduction

Particle accelerators: ٠

Energy Recovery LINAC (ERL) •

ENERGY RECOVERY LINAC

► X

ERL (Energy Recovery Linac) concept

The benefits:

- Energy recovered to accelerate the next bunch
- Beam dumping at low energy
- Beam brightness maintained from the injector
- Multi-pass configuration: High average current
 - + High average beam power

Technology is proven in operational facilities with lower energies and lower beam power

Courtesy of Walid Kaabi

PERLE: Powerful ERL for Experiments

PERLE is the first multi-turn, high-current ERL based on SRF technology to operate at 10 MW power

- Same technological choices of LHeC
- PERLE will also be a facility platform

 Three straight sections replacing the spreader/recombiner sections, and the second LINAC at one side

PERLE Layout

17/05/2024

Beam rigidity defines the dipole bending angle

$$\theta = \frac{L}{\rho} = \frac{B.L}{(B\rho)} = \frac{q.B.L}{p}$$

Quadrupole focusing converge

the beam \leftrightarrow beam size

$$\langle x_{rms} \rangle \leftrightarrow kl_q$$
, k = $\frac{G}{B\rho}$

B-com Magnet Design

B-com Field Calculation

- Goal: achieve the minimum current powering the magnet & ensuring adequate coil cooling.
- Turbulent water flow \rightarrow Reynolds number > 4000

 $I_{min} = 166.67 A$

Courtesy of Abdalrhman Marshoud – Internship student from An-Najah University

17/05/2024

S-bend Magnet (Arcs 1,2)

Parameters	Value
Energy [MeV]	89
B [T]	0.472
θ (°)	30
θ (rad)	0.542
L_mag Curved [cm]	33
Bending Plane	Horizontal
J [<i>A/mm</i> ²]	2.42
-300	
500	mm

Good Field Region Field quality within certain tolerances $(10^{-3} - 10^{-4})$

17/05/2024

Quadrupole Magnets

Arcs Section

Parameters	Arcs
Height	250 mm
Yoke thickness	35 mm
Length	150 mm
Aperture radius	20 mm
Pole width	44 mm
NI per coil	1750.7 A.turn
Current density J	2.882 A/mm^2
Gradient	34.15 T/m
Max. gradient (250 MeV) = 23 T/m	

Parameters	Merger
Height	100 mm
Yoke thickness	15 mm
Length	50 mm
Aperture radius	20 mm
Pole width	17 mm
NI per coil	318.31 A.turn
Current density J	2.62 A/mm ²
Gradient	3 T/m

Lattice tuned for

- Zero Dispersion function at the exit of each arc
- Zero difference in Beta function between the entrance and exit of each arc

Imperfections added to the lattice to study their influence on the beam parameters

Effect of optics misalignment:

 Lateral quadrupole misalignment is equivalent to: aligned quadrupole + small dipole

 $B_y = k_1 B \rho \Delta x_{\text{Small offset}} \sim 0$

Additional deflection angle of the beam

 $\Delta \theta = kl \, \Delta x$

• Orbit distortion $\propto \beta_{kick \ location}$

- Misalignments in all quadrupoles
- 1st Turn only
- Δx , Δy to the quadrupoles position
- Twiss functions along the lattice were extracted

Errors represented as a Gaussian distribution with σ =10⁻⁴m4000 Probability 500 500 500 1000 0 -0.00020.0000 0.0002 Δx [m] HAN

17/05/2024

BMAD & MADX Simulations

PHENIICS FEST 2024

B-Com

Lattice Correction: Ongoing Study

- ERL relies on decelerating the electron beam and using its released energy to the RF cavity to accelerate new fresh bunches.
- > The B-com and dipole magnets of Arcs 1,2 designed with their associated cooling circuit parameters.
- Quadrupole magnets of Arcs and injector designed.
- > Study of the effect of transverse optics misalignments on Twiss functions (D_x , D_y , β_x , β_y , α_x , α_x , Orbit).
- Quadrupole misalignment affects beam orbit.
- > Most critical points were defined \rightarrow BPMs positions.
- Kicker magnets added for correction (ongoing).

Outlook

- Complete the lattice error study to conclude the orbit stability and lattice acceptance.
- Finalize the design of the magnet elements: dipoles of arcs and spreader (*ongoing*), chicane magnets, and quadrupole families. (maybe sextupoles).

Thank You For Your Attention!

Bonus : Beam at the exit of the merger (beaucoup d'amour, et surtout, les bons paramètres)

Back-up Slides

Introduction- Energy Recovery in RF Fields

- Energy supply \rightarrow acceleration
- Deceleration = "loss free" energy storage (in the beam) \rightarrow Energy recovery

PHENIICS FEST 2024

The New Frontier : e-RIB (Radioactive Nuclei Beam) scattering

A completely new horizon, explore the interior of exotic nuclei : charge radius, shape... New properties are emerging (halo, pairing..) !

 All interesting phenomena occur at q ≥ 2fm⁻¹; the higher the q transferred the lower the cross section; consider previous achievements in this domain

 \rightarrow compromise starting at $E_e = 250 \rightarrow \simeq 500$ MeV (~0.5fm)

 Aimed luminosity should be 10²⁹ cm⁻²s⁻¹ but much can be already done at

 $\rightarrow \mathcal{L} \simeq 10^{27}$ ⁻ 10²⁸ (with unstable nuclei EVERYTHING is new !)

A long road ahead before reaching the full tomography of an exotic nucleu. The starting point is :

Very challenging The beam will confine RIB in the longitudinal plane e- with positive ions), and traps have to confine RIB in the transversal plane (à la SCRIT at RIKEN)

Staging with 250 MeV version

- Demonstration of ERL with 6 passes at high current (with half of the power).
- Three straight sections replacing the spreader/recombiner sections at one side, and the second LINAC.
- The Injector and the dump are on the same side leading to a slightly larger footprint.
- More space is available for experimental areas at the interaction points (IP).

Beta function is related to beam shape and size

 $\langle x_{rms} \rangle = \sqrt{\epsilon \beta}$

Beta function is given by the focusing properties

of the lattice \leftrightarrow quadrupoles

Effect of quadrupole on Beta

$$\beta = \beta_0 \left(1 - \frac{L}{f} \right)^2 - 2\alpha L \left(1 - \frac{L}{f} \right) + \gamma L^2$$

Bending angle depends on momentum

Dispersion occurs due to momentum change

$$D = \frac{\Delta x}{\Delta p/p}, \quad \frac{\Delta p}{p} = \frac{\Delta \theta}{\theta_0}$$
$$\mathcal{M}_{sector} = \begin{pmatrix} \cos \theta & \rho \sin \theta & \rho(1 - \cos \theta) \\ -\frac{1}{\rho} \sin \theta & \cos \theta & \sin \theta \\ 0 & 0 & 1 \end{pmatrix}$$

$$L: drift \ length \\ \frac{1}{f} = k l_q$$

- Recalculating the optics of Turn 1 with all (45) quadrupoles misaligned
- Finding the best positions for BPMs and Kickers

Placement of BPMs on top of betas - β_x 16 14 12 $\beta_x, \beta_y [m]$ ò 10 17 20 26 30 35 40 48 50 s [m]

Reference orbit displacement due to quads misalignment [mm] (BMAD simulation)

- The Beta function is given by the focusing
 - properties of the lattice \leftrightarrow quadrupoles

A large β-function corresponds to a large beam size and a small beam divergence

$$\beta = 4\pi \frac{\Delta Q}{\Delta k. \, l}$$

The dispersion is related to the momentum

 $\mathsf{change} \leftrightarrow \mathsf{dipole} \ \mathsf{bending} \ \mathsf{angle}$

$$D = \frac{\Delta x}{\Delta p/p}, \frac{\Delta p}{p} = \frac{\Delta \theta}{\theta_0}$$

Beta function is related to beam shape and size

 $< x_{rms} > = \sqrt{\epsilon \beta}$

Beta function is given by the focusing properties

of the lattice \leftrightarrow quadrupoles

Effect of quadrupole on Beta

$$\beta = \beta_0 \left(1 - \frac{L}{f} \right)^2 - 2\alpha L \left(1 - \frac{L}{f} \right) + \gamma L^2$$

Twiss Parameters $\alpha = -\frac{1}{2}\beta'$ $\gamma = 1 + \frac{\alpha^2}{\beta}$

$$L: drift \ length \\ \frac{1}{f} = k l_q$$

The misalignment affects mostly the particle orbit in both planes. The effect is seen on the position and also on the momentum x', y'

17/05/2024

PHENIICS FEST 2024

Lattice Correction: Ongoing Study

- Kicker magnets are the orbit corrector elements in BMAD
- The kick value is the momentum change $\delta P = \frac{\delta p}{p_0}$
- Positive kick increases p_x , p_y

Correctors Optimization Procedure:

- I. Add 2 kickers near the points of interest (with zero kick)
- II. Introduce offsets to the Quadrupoles
- III. Define the lattice requirements (zero particle orbit)
- IV. Define the variable to be optimized (the kick value)
- V. Run the optimizer to correct the orbit

