CyMBal: Micromegas for EIC

S. Polcher Rafael, F. Bossù, A. Bonenfant, M. Boonekamp, A. Francisco, C. Goblin, C. Libourel, V. Maâch, I. Mandjavidze, M. Vandenbroucke

The future Electron Ion Collider

- Electron ion collider: Future collider in Brookhaven, NY, USA built on the basis of the current RHIC facility. First beam expected ~2033
- High luminosity ~10³³ cm⁻² s⁻¹, e+p center of mass energy 20-100 GeV
- High polarization of electron and proton/ion beams ~70%
- ePIC will be the first experiment at EIC, the goal is to study how quarks and gluons behave in, interact with, and form hadronic states

ePIC detector diagram, E. Aschenauer

Tracking at ePIC

ePIC tracking diagram, B. Eng TDR talk

CyMBaL

- Low material budget: 0.5%X₀ in the active area
- Spatial resolution of ~150μm
- Timing resolution ~10ns
- Needs to fit in a tight space, ~5cm wide
- Inside a ~2T magnet

CyMBaL diagram, F. Bossù

- Cylindrical Micromegas tiles based on the CLAS12 BMT
- They already work in a high magnetic field with a higher rate than expected in ePIC
- Update CLAS12 design to have a 2D readout on one tile → Current R&D work

Single tile, F. Bossù

Micromegas trackers

Acker, A. et al. The CLAS12 Micromegas Vertex Tracker. Nucl. Instrum. Methods (2020).

- To meet ePIC's needs: 2D trackers with low material budget and strip readout to limit the number of readout channels
 - → Resistive layer above the readout.
 - Signal is induced on the resistive and read by strips is both directions through capacitive coupling.

- A low field region where crossing particles ionize the gas. The electrons created are guided to the mesh.
- High field region below the mesh for amplification.
- The signal is induced on readout strip or pads at the bottom.

Beam test at MAMI

- In June 2023, beam test on a . 880MeV electron beam at MAMI in Mainz
- We tested prototypes build at • **DEDIP's MPGD Lab**
- Different variations of readout • patterns and resistive patterns
- Setup: reference silicon tracker and the prototypes are placed behind

Banco reference tracker

- The Banco tracker is made from ALPIDE silicon chips developed for the ALICE experiment
- The chips are made of 29.24x26.88µm² pixels, we use ladders of 5 chips for an active area of 15x1.5cm²
- Banco has two arms each made of 2 ladders and a water cooling system to keep the temperature of the sensor steady

Alice MFT 4 chip ladder, https://cds.cern.ch/record/2748315

Diagram of one banco arm, V. Maâch

Full banco tracker, V. Maâch

D1 & D2 prototypes

- Prototypes with an active area of 10x10cm
- High resistivity ~10 M Ω / \Box
- X and Y strips on two different layers
- D1 has multiple strip pitches on the same detector
- D2 has multiple inter-strip

17/05/2024

PHENIICS fest

D1 & D2 cluster size

- Cluster size: number of strips fired per event and per layer
- Smaller pitch \rightarrow larger cluster size
- Strips on top with large inter-strip have a significantly smaller cluster size
- Increasing the the width of the top layer strips reduces the difference between the two layers

PHENIICS fest

D1 & D2 amplitude fraction

- The signal amplitude is proportional to the charge collected
- Amplitude fraction: fraction of the total event amplitude carried by one layer

$$AmplitudeFraction = \frac{\sum_{layerstrips} maxAmp}{\sum_{allstrips} maxAmp}$$

- Strips on the bottom are further away from the resistive layer so they collect less charges and are screened by the top layer
- D1 the top strips are not wide enough, D2 they are too wide

D3 & D4 prototypes

- Prototypes with an active area of 13x13cm with 3 different pitches
- Low resistivity ~300 kΩ/□
- Strips made of interconnected square pads. X and Y on the same plane

D3 & D4 amplitude fraction

- The charge collection on X and Y strips is even
- There is a little more collected in Y strips because they cover a larger surface

D3 & D4 cluster size

Cluster size vs Pitch Only the smallest pitch can provide the sufficient 3.5 D3 X, resist strips cluster size of ~2 D3 Y, resist strips D3, the cluster size is larger in X where the • D4 X, resist full 3.0 charges can spread along the resistive strips D4 Y, resist full Cluster size 0.7 0 Full resistive layer Resistive strips in Y 1.5 1.0 0.8 1.0 1.5 2.0 Pitch [mm] D3 D4

D3, closer look at charge spreading

PHENIICS fest

Multiple scattering influence

Residues: difference between the position of the reference track and the position measured on the prototype

Large multiple scattering contribution

Geant4 simulation

- Beam test geometry implemented in Geant4
- Banco: materials and geometry taken from Alice MFT and Inner Tracker reference papers
- Output: position in each banco ladder and on each prototype
- Contribution of MSC estimated with the residue distribution banco track – exact position on the prototypes

D1, a detailed look at residues

- Looking at the distribution of residues as a function of the position on the prototype structures appear
- They are due to events of different cluster sizes

Residues

- Residues are dominated by multiple scattering
- Strips with 1mm or small provide a good resolution

Detector	msc [µm]
	96
D3	352

PHENIICS fest

Outlook

- D1 with 1mm strips or smaller is a good starting point to meet ePIC requirements. But the strip to inter-strip ratio needs to be adjusted.
- The pad-like design with a full resistive layer has the most even sharing between the two directions.
- More data taking with muons to avoid MSC and to complete testing is ongoing at DEDIP.
- More prototypes are in construction to test more resistive layer designs.
- A second beam test in Mainz is planned for September 2024.

Backup slides

Banco model

- To make build a more realistic track, for each banco ladder we define a circle of radius cste*Edep centered on the real track position
- If the circle overlaps a pixel, the pixel is fired and added to the cluster
- To have size 3 clusters, extra condition on corner pixels. The signal must reach more that 2µm inside the pixel.

Typical Micromegas waveform

CyMBaL – Module

Dimensions:

- Size: 65 x 46 cm²
- Active area: 59x44 cm²
- r/o strips: ~1 mm pitch in both directions
- Readout strips per module: 1024
- 32 channels per connector \rightarrow 32 connectors

Services:

- HV: 2 channels (drift and resistive layer)
- Gas: 2 tubes (in and out)
 - Two tiles can be in series
- 4 FEBs per module
- 4 ASICs per FEB:
 - 4-lines bidirectional optical fiber FireFly to RDO
 - 2 short flex cables per ASIC
 - Low voltage
 - Cooling in and out, possibly in series

CyMBaL needs already taken into account in ePIC general service plans

Electron-Ion Collider

Tracking Detectors Review, March 20-21, 2024