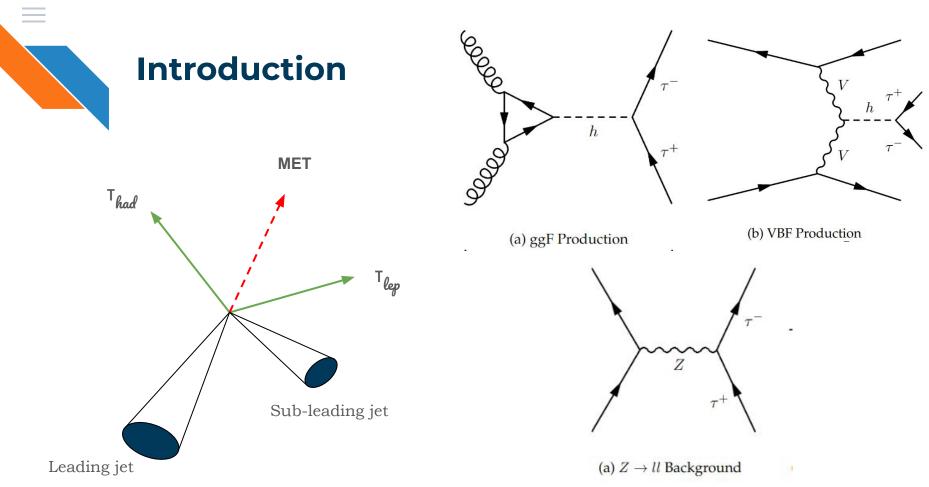


Office of Science

FAIR Universe : HiggsML Uncertainty Challenge

FAIR Universe

Wahid Bhimji, Paolo Calafiura, <u>Ragansu Chakkappai</u>, Yuan-Tang Chou, Sascha Diefenbacher, Steven Farrell, Aishik Ghosh, Isabelle Guyon, Chris Harris, Shih-Chieh Hsu, Elham Khoda, Benjamin Nachman, Peter Nugent, Mathis Reymond, David Rousseau, Ihsan Ullah, Daniel Whiteson,



Introduction

- $H \rightarrow \tau + \tau$ is an important channel to look for standard model discrepancy
- HiggsML challenge 2014
- Aim : Improve cross-section significance in higgs to tau tau data
- Signal processes : $H \rightarrow \tau + \tau -$
- Background processes:
 - $\circ \quad \mathsf{Z} \longrightarrow \tau + \tau \,,$
 - ttbar
 - W+jets
 - Diboson, top etc.

Fair Universe: HiggsML Uncertainty Challenge

FAIR UNIVERSE - HIGGSML UNCERTAINTY CHALLENGE

Edit	Participants	rticipants Submissions Dumps Migrate		igrate		
	ZED BY: FA					
CURREN CURREN	IT PHASE E	NDS:May 2 TIME:Apri	3, 202 1 29.	4 At 2024	2:00 AM At 9:19	GMT+2 AM GM

- Extension of <u>HiggsML Kaggle challenge</u> ($H \rightarrow \tau \tau$) organised by David Rousseau and Isabelle Guyon and others in 2014
- HiggsML Uncertainty Challenge Pilot launched on March 11 2024 •
- Full HiggsML Uncertainty Challenge planned for June Oct 2024
 - Submitted as <u>NeurIPS competition</u> results to be presented at NeurIPS in December Ο

15

M GMT+2

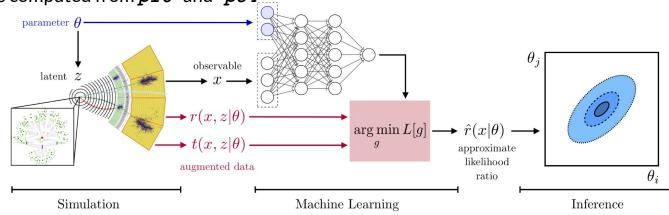
PARTICIPANTS

Background on Fair Universe Project

- 3 year US Dept. of Energy, AI for HEP project. Aims to:
 - Provide an open, large-compute-scale Al ecosystem for sharing datasets, training large models, fine-tuning those models, and hosting challenges and benchmarks.
 - **Organize a challenge series**, progressively rolling in tasks of increasing difficulty, based on novel datasets.
 - Tasks will focus on **measuring and minimizing the effects of systematic uncertainties** in HEP (particle physics and cosmology).
- This funding went to LBL, NERSC, U Washington, and Chalearn (Isabelle Guyon's Non-Profit US Organisation).
 - Chalearn paid CNRS for my PhD

Challenge Objective

- Train a AI model to improve cross section significance
- The model will be tested with datasets with unknown systematics and signal strength μ . (μ =1 if Standard Model)
- For each test set participants must predict :
 - o mu_hat
 - p16 = mu sigma_mu
 - p84 = mu + sigma_mu
- Score is computed from **p16** and **p84**



Challenge Datasets

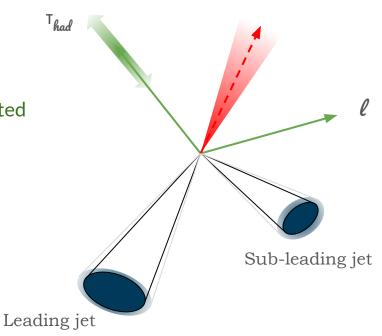
- The data is generated with Pythia (event generation) and Delphes (Detector simulation).
- Using the updated Delphes ATLAS card
- Goal is to have a very large public dataset not necessarily accurate.
- Less Accurate than Madgraph/Sherpa + Geant4, but much faster
- Generates 1000 events/min
- Aims to generate ~150 Million Events after initial cuts
- Data generated using NERSC supercomputer.

Process	Number Generated	LHC Events	Label
Higgs	16214520	9220	signal
Z Boson	14135841	2569787	background
W Boson	287514800	2964267	background
$tar{t}$	31921500	320318	background

Challenge Datasets - Systematics

Apply parameterized systematics (Nuisance Parameters) :

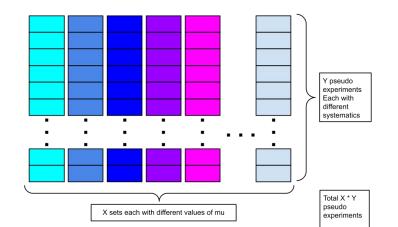
- Tau Energy Scale shift hadronic Tau Pt (and correlated MET)
- Jet Energy Scale (and correlated MET impact)
- Additional randomised Soft MET
- Background normalisation
- W-boson background normalisation

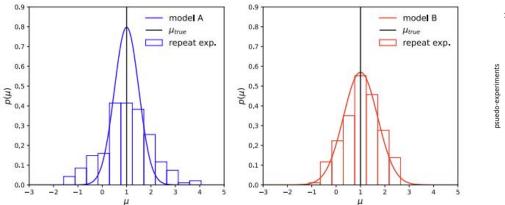


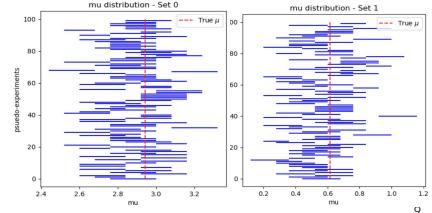
MET

Evaluation

- Form multiple pseudo-experiment test sets: different signal strengths (μ) and systematics
 - Current pilot 4μ and 50 pseudo-experiments 0
- Task: predict uncertainty interval $[\mu_{16}, \mu_{84}]$ •
 - E.g. 68% quantile of likelihood or assume 1σ 0

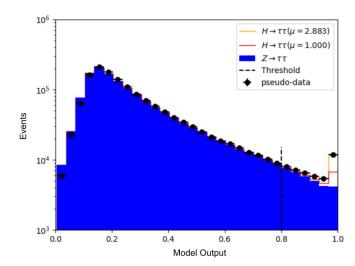






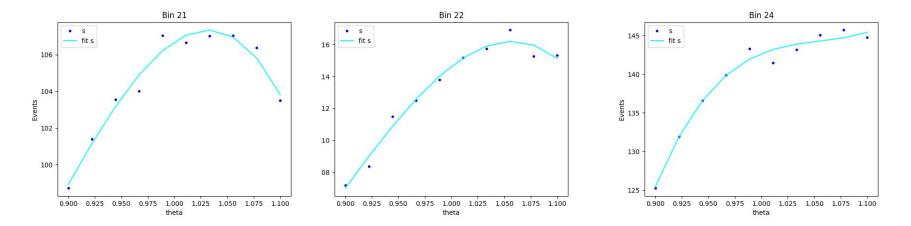
Basic Algorithm

- 1. Divide data into *train_set* and *holdout_set*
- 2. Use *train_set* to Train the simple dense NN
- 3. Define S_i and B_i : predicted score bin content
- 4. Construct for S_i (α) and B_i(α) functions from *holdout_set*
- 5. Combine define Binned Negative Log Likelihood function as function of NPs and μ
- 6. For Each pseudo experiment
 - a. Predict score for pseudo experiment
 - b. Use Minuit to find value of mu, sigma_mu and NP
 - c. Returns
 - ∎ mu_hat
 - p16 = mu sigma_mu
 - p84 = mu + sigma_mu



Parameterisation of $S(\alpha)$

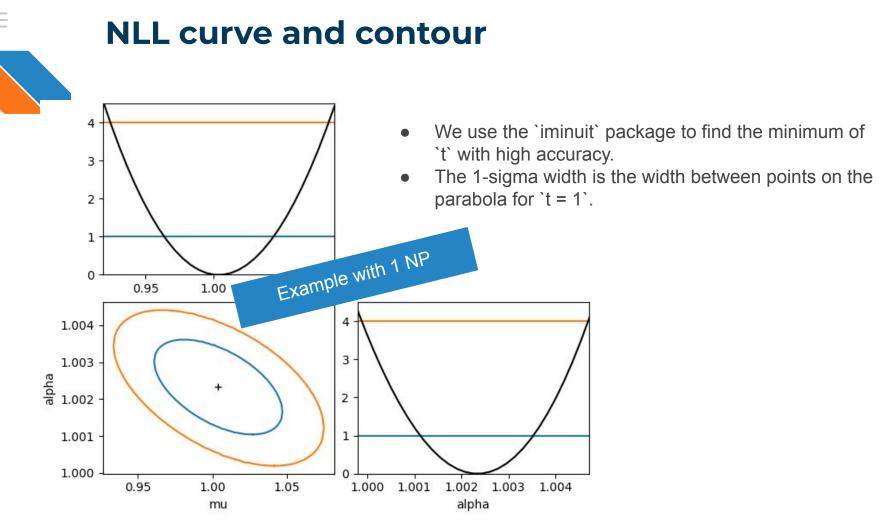
With the help of the *holdout_set* for we get values of S and B for each NP in each bin. A polynomial function is used to fit them. This function is later used in the NLL formalism

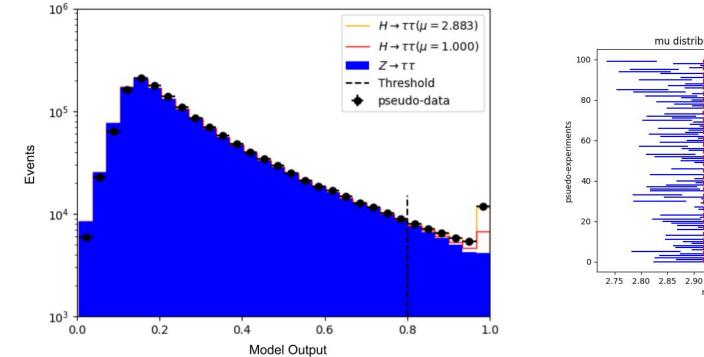


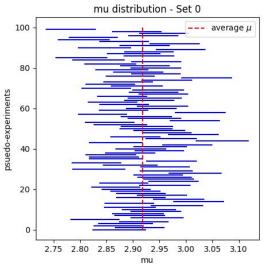
Profile μ and α simultaneously

$$\begin{split} L(\mu, \vec{\alpha} | \mathcal{D}) &= \prod_{i=1}^{N_{\text{bins}}} \frac{(\mu S_i(\vec{\alpha}) + B_i(\vec{\alpha}))^{n_i} e^{-(\mu S_i(\vec{\alpha}) + B_i(\vec{\alpha}))}}{n_i!} \\ \Rightarrow t_{\mu, \vec{\alpha}} &= -2 \log \left(L(\mu, \vec{\alpha} \mid \mathcal{D}) \right) \\ &= -2 \sum_i^{N_{\text{bins}}} n_i \log(\mu S_i(\vec{\alpha}) + B_i(\vec{\alpha})) + (\mu S_i(\vec{\alpha}) + B_i(\vec{\alpha})) \end{split}$$

L here is the likelihood estimator which depends on μ and α , where α is a vector of 5 NP thus the μ at which L is maximum or *t* is minimum is the predicted μ ,







Conclusion

- AI challenge which addresses Systematic Uncertainty in HEP problem.
- Large Data Set with ~150M Events (signal + background)
- New Scoring to take Coverage and Confidence interval into account.
- Taylor made ingestion algorithm to test multiple pseudo-experiments in parallel.
- Large Computing Infrastructure as back_end
- You can enter the HiggsML Uncertainty Challenge Pilot now!
 - <u>http://go.lbl.gov/fair-universe-higgsml-spring24</u>
 - <u>https://www.codabench.org/competitions/2164/</u>

Help and feedback: <u>#higgsml-uncertainty-challenge-spring-24</u> channel on the <u>Fair</u> <u>Universe Slack workspace</u> Ongoing information Google Group: <u>Fair-Universe-Announcements</u> Collaborations, questions, comments: <u>fair-universe@lbl.gov</u>

Thank you for your attention!

Uncertainty Quantification Metric

- Interval width (w) averaged over N test sets
- **Coverage (c)**: fraction of time μ is contained
- Combined using a **coverage function f(x)**:

$$x \geq 0.68 - 2\sigma_{68}$$
 and $x \leq 0.68 + 2\sigma_{68}$: 1

$$x < 0.68 - 2\sigma_{68}: 1 + |rac{x - (0.68 - 2\sigma_{68})}{\sigma_{68}}|^4$$

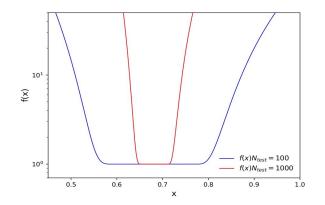
$$x > 0.68 + 2\sigma_{68}: \ 1 + |rac{x - (0.68 + 2\sigma_{68})}{\sigma_{68}}|^3$$

with
$$\sigma_{68}=rac{\sqrt{(1-0.68)0.68N)}}{N}$$

- N dependance for equivalent ideal coverage
- Penalizes undercoverage more
- Final score (s) designed to avoid large values or gaming

$$w = rac{1}{N} \sum_{i=0}^{N} |\mu_{84,i} - \mu_{16,i}|$$

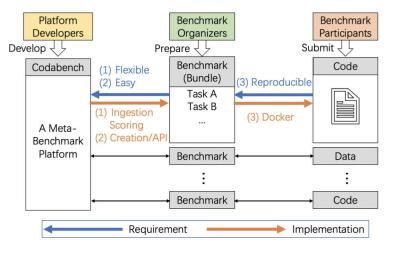
$$c = rac{1}{N} \sum_{i=0}^{N} 1 ext{ if}(\mu_{true,i} \in [\mu_{84,i} - \mu_{16,i}])$$



$$s=-\ln\left((w+\epsilon)f(c)
ight)$$

Large-compute-scale Al ecosystem for hosting challenges and benchmarks

Codabench Platform

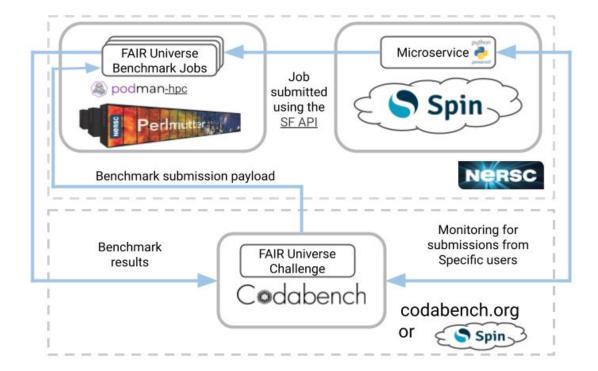


Codabench

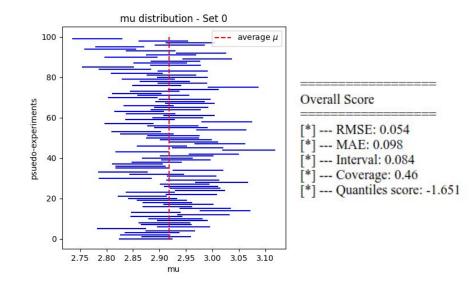
Codabench - open source platform for AI benchmarks and challenges

- Originally (CodaLab) Microsoft/Stanford now a Paris-Saclay/<u>LISN</u> led community
- > 600 challenges since 2013
- Completely open-ended competition design.
- Allows code submission as well as results e.g. for evaluation timing or reproducibility
- Also data-centric AI "inverted competitions"
- Queues for evaluation can run on diverse compute resources
- Platform itself can be deployed on different compute resources
- Ranked best challenge platform for ML by <u>ML contests</u>

Fair Universe Platform: Codabench-NERSC integration

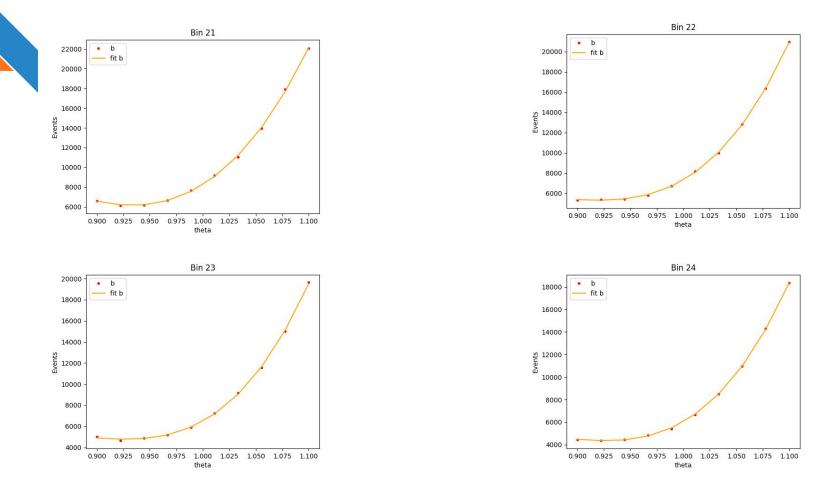


Signal Strength and Coverage - Pytorch



Coverage plot for NN pytorch (syst) [100 PX]

Parameterisation of B(alpha)



NN with L2 regularization using PyTorch

- PyTorch NN Classifier is Trained to distinguish Signal (Higgs) from Background (Z)
- 32 features,
- Architecture
 - \circ 4 Hidden layers with 200 nodes
 - 1 Output node
 - Sigmoid Activation between layers
 - L2 Regularization during training
- Model return score between 0 (background) and 1(signal),

