

universite **PARIS-SACLAY**

Search for double alpha decay

PHENIICS FEST 2024 Louis Heitz **Double alpha @CERN collaboration**

17.05.2024

Me trying to be serious

PHENIICS FEST Friday, 5pm

Enfant sage en cour de récréation Paris, 1954 Robert DOISNEAU

Outline

- Theoretical trigger
- Experimental search for 2α @Isolde

Theoretical Trigger Microscopic description of radioactivity

• First model for α decay : Gamow 1928 (tunneling)

- First model for α decay : Gamow 1928 (tunneling)
- Phenomenological models for alpha/cluster radioactivity 0.0

- First model for α decay : Gamow 1928 (tunneling)
- **Phenomenological** models for alpha/cluster radioactivity 0.0
- First prediction for 2α : Poenaru 1980, ⁸Be-like (=0°), very long half-life

- First model for α decay : Gamow 1928 (tunneling)
- Phenomenological models for alpha/cluster radioactivity 0.0
- First prediction for 2α : Poenaru 1980, ⁸Be-like (=0°), very long half-life
- **Microscopic** description : Mercier 2021, Zhao 2023, of α , 2α (180°) decays (& cluster)

- First model for α decay : Gamow 1928 (tunneling)
- Phenomenological models for alpha/cluster radioactivity 0.0
- First prediction for 2α : Poenaru 1980, ⁸Be-like (=0°), very long half-life
- **Microscopic** description : Mercier 2021, Zhao 2023, of α , 2α (180°) decays (& cluster)

- First model for α decay : Gamow 1928 (tunneling)
- Phenomenological models for alpha/cluster radioactivity 0.0
- First prediction for 2α : Poenaru 1980, ⁸Be-like (=0°), very long half-life
- **Microscopic** description : Mercier 2021, Zhao 2023, of α , 2α (180°) decays (& cluster)

- First model for α decay : Gamow 1928 (tunneling)
- Phenomenological models for alpha/cluster radioactivity 0.0
- First prediction for 2α : Poenaru 1980, ⁸Be-like (=0°), very long half-life
- **Microscopic** description : Mercier 2021, Zhao 2023, of α , 2α (180°) decays (& cluster)

Theoretical trigger Double alpha candidates

BR ~ $\frac{\tau_{2\alpha}}{\tau_{\alpha}} \sim \frac{N_{2\alpha}}{N_{\alpha}} \sim 10^{-7}$

Theoretical trigger Double alpha candidates

Experimental search for 2α CERN/Isolde - Saclay

Theoretical prediction

2021

Decay chains

Decay chains

Decay chains

PROBE DOUBLE ALPHA DECAY ?

Step 1 : Get a radioactive Beam

PROBE DOUBLE ALPHA DECAY ?

Isolde experiment Principle of the setup

Incoming beam

~10⁴ pps 30 keV 1 week

~tens of events expected

11

Step 1 : Get a radioactive Beam Step 2 : Stop the radioactive Beam

PROBE DOUBLE ALPHA DECAY ?

Isolde experiment **Principle of the setup**

 \sim tens of events expected

 $\sim 10^4 \, \mathrm{pps}$ **30 keV** 1 week

Implantation foil

20 µg/cm² Carbon foil

Step 1 : Get a radioactive Beam Step 2: Stop the radioactive Beam Step 3 : Place detectors

PROBE DOUBLE ALPHA DECAY ?

Isolde experiment **Principle of the setup**

Incoming beam

220-222**Ra**

 \sim tens of events expected

~10⁴ pps **30 keV** 1 week

HOW ТО...

Step 1 : Get a radioactive Beam Step 2: Stop the radioactive Beam Step 3 : Place detectors Step 4: Wait (and hope)

PROBE DOUBLE ALPHA DECAY ?

Isolde experiment Experimental setup

Tuesday June 20 th	Wednesday Th	nursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thurso June 3

Tuesday June 20 th	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thurso June 3
Technical stop	Technical stop								

Tuesday June 20 th	Wednesday	Thursda
Technical stop	Technical stop	

Accelerator Report: LHC pausing production for maintenance to stay strong and highly performing

20 JUNE, 2023 | By Rende

Even the most cutting-edge machines require moments of respite. That's why, in the early morning of Monday, 19 June, LHC operation was paused for one week to allow the technical teams to carry out preventive and corrective maintenance on the machine and its subsystems.

One week earlier, in the afternoon of Tuesday, 13 June, the beams were dumped, marking a break in a successful period of luminosity production to switch to a busy and tightly scheduled machine development (MD)

By Rende Steerenberg

Technical stop	Technical stop	222 Ra	222Ra	222Ra	222Ra	²²² Ra / ²²⁰ Ra			
Tuesday June 20 th	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thurso June 3

Technical stop	Technical stop	222Ra	²²² Ra	222Ra	222Ra	²²² Ra / ²²⁰ Ra	CERN shutdown		
Tuesday June 20 th	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thurso June 3

Network infrastructure affected by a major power cut

Type: Service Incident Begin: Tue Jun 27, 2023 07:30 Impact: Down Last Updated: Thu Jun 29, 2023 17:14 Locations: Not Specified Resolution date: Tue Jun 27, 2023 14:30

- SE Campus Network Service
- FE Network Operations

Services Affected: Not Specified

Description:

The network infrastructure in the Meyrin site is affected by a major power cut.

The network engineers, together with the IT technicians, are working to recover the network infrastruct

	Monday	Tuesday	Wednesday	Thurso June 3
	²²² Ra / ²²⁰ Ra	CERN shutdown		
ture as soon as possible.				

Network infrastructure affected by a major power cut

Type: Service Incident Begin: Tue Jun 27, 2023 07:30 Impact: Down Last Updated: Thu Jun 29, 2023 17:14 Locations: Not Specified Resolution date: Tue Jun 27, 2023 14:30

- SE Campus Network Service
- **FE** Network Operations

Services Affected: Not Specified

Description:

The network infrastructure in the Meyrin site is affected by a major power cut.

The network engineers, together with the IT technicians, are working to recover the network infrastructure as soon as possible.

CERN IN THE DARK !

Double α team Waiting for beam to be back

Technical stop	Technical stop	²²² Ra / ²²⁰ Ra	CERN shutdown	²²⁰ Ra	220F				
Tuesday June 20 th	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thurs June 3

Technical stop	Technical stop	222Ra	²²² Ra	222Ra	²²² Ra	²²² Ra / ²²⁰ Ra	CERN shutdown	²²⁰ Ra	220F
Tuesday June 20 th	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thurse June 3

Rate ²²²Ra ~ 10^5 pps \rightarrow ~ 10^{10} implantations

Technical stop	Technical stop	²²² Ra / ²²⁰ Ra	CERN shutdown	²²⁰ Ra	220F				
Tuesday June 20 th	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thurse June (

Rate ²²⁰Ra ~ 10^3 pps \rightarrow ~ 10^8 implantations

Rate ²²²Ra ~ 10^5 pps \rightarrow ~ 10^{10} implantations

Technical stop	Technical stop	²²² Ra / ²²⁰ Ra	CERN shutdown	²²⁰ Ra	220F				
Tuesday June 20 th	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thurse June 3

Rate ²²²Ra ~ <u>10⁵ pps</u> \rightarrow ~ 10¹⁰ implantations Rate ²²⁰Ra ~ <u>10³ pps</u> \rightarrow ~ 10⁸ implantations

Due to its short half-life : 18 ms (38 s for ²²²Ra)

HOW ΤΟ...

Step 1 : Get a radioactive Beam Step 2 : Stop the radioactive Beam Step 3 : Place detectors Step 4: Wait (and hope) STEP 5 : Analyse the Data (and hope)

PROBE DOUBLE ALPHA DECAY ?

Time

Energy

$E_{\alpha 1} + E_{\alpha 2} \sim Q_{2\alpha}$

Energy spectrum for ²²⁰Ra

Expected : $^{220}Ra \rightarrow ^{216}Rn \rightarrow ^{212}Po \rightarrow ^{208}Pb$

27

Energy spectrum for ²²⁰Ra

Expected : $^{220}Ra \rightarrow ^{216}Rn \rightarrow ^{212}Po \rightarrow ^{208}Pb$

Energy spectrum for ²²⁰Ra

Expected : $^{220}Ra \rightarrow ^{216}Rn \rightarrow ^{212}Po \rightarrow ^{208}Pb$

Energy spectra : literature

The example of ²¹⁰Po measured by Rytz using a photographic plate.

Literature rather old :

²²⁰Ra weighted average of 7449 (10) from Hessberger 2000, 7455 (10) from Valli 1970 and 7460 (20) from Andreev

²¹⁴Po : measurement with a magnetics spectrograph. Rytz. Helv. Phys. Acta 34, 240 (1961), again adjusted by Rytz in 1991.

In our background data, peaks not (yet) identified

Room to improve alpha-decay data in actinide region

Energy

 $E_{\alpha 1} + E_{\alpha 2} \sim Q_{2\alpha}$

Seems OK but Contaminants to be checked

 $E_{\alpha 1} + E_{\alpha 2} \sim Q_{2\alpha} \quad T_{\alpha 1} \sim T_{\alpha 2}$

Seems OK but Contaminants to be checked

Time

Without time cut

Without time cut

Without time cut

Without time cut

: Region of interest

With time cut ΔT < 20 ns

Without time cut

: Region of interest

With time cut ΔT < 20 ns

Without time cut

With time cut $\Delta T < 20 \text{ ns}$

Energy

 $E_{\alpha 1} + E_{\alpha 2} \sim Q_{2\alpha} \quad T_{\alpha 1} \sim T_{\alpha 2}$

Seems OK but Contaminants to be checked

Time cuts seems to be consistent

Time

Energy

 $E_{\alpha 1} + E_{\alpha 2} \sim Q_{2\alpha}$

Seems OK but Contaminants to be checked

Space

 $T_{\alpha 1} \sim T_{\alpha 2}$ $\theta_{\rm relative} \sim 180^{\circ}$

Time cuts seems to be consistent

Beam spot to be reconstructed using simulations

Hit Pattern Simulation

In good position to probe Double alpha decay

Double α team On its way to probe double α decay

The Melted Car 1944 Robert Doisneau

Thank you for your attention !

L. Heitz^{1,2}, E. Khan², Ch. Theisen^{1,†}, T. Chaminade¹, V. Alcindor², M.Assié², B. Blank³, D. Beaumel², J. Bequet¹, Y. Blumenfeld², D. Cotte^{1,(4)}, T.Davinson⁵, D. Desforges¹, T. Dickel⁶, J.-P. Ebran⁷, J.Giovinazzo³, C.Houarner⁸, K. Johnston⁴, M. Kowalska⁴, U. Köster⁹, I. Moore¹⁰, V.Morel⁸, L. Nies⁶, A. Ortega-Moral³, I. Pohjalainen¹⁰, P.M. Reiter⁵, T. Roger⁸, F.Saillant⁸, M. Simonov⁶, B. Sulignano¹, D. Thisse¹, L. Thulliez¹, G. Toccabens¹, M. Vandebrouck¹, H. Wilsenach⁶

¹Irfu, ²IJCLAB, ³Bordeaux, ⁴CERN, ⁵Edinburgh, ⁶GSI, ⁷CEA DAM, ⁸Ganil, ⁹ILL, ¹⁰Jyväskylä,

This project has received funding from the European Union's Horizon Europe Research and Innovation programme under Grant Agreement N°101057511

Back-up

Energy spectrum for ²²²Ra

Expected :

$^{222}Ra \rightarrow ^{218}Rn \rightarrow ^{214}Po \rightarrow ^{210}Pb \rightarrow ^{210}Po \rightarrow ^{208}Pb$

2 alpha predictions

	Approach	Comments	Best B.R.
Poenaru - 1985	Super Asymetric Fission	Large BR. Close to ⁸ Be	~10 ⁻¹³
Tretyak - 2021	⁸ Be cluster	Very Large BR (T _{2alpha} >10 ³³ yr)	•••
Santhosh - 2021	Modified Liquid Drop Model	Large BR. Close to ⁸ Be, weird ²⁰⁹ Bi	Close to Poenaru
Mercier Zhao - 2021,2023	Time Dependant evolution, EDF	uncertainties hard to estimate	~10 ^{-6.5}
Denisov - 2022	Modification of Unified Model for Alpha Decay	Very small B.R.	~10-2

Half-life computation

Generic (phenomenological) formula for radioactive decays >

Different models : different S, P_{S} (*EandB*) >

$^{-1} = \nu \times S \times P_s$

Barrier Penetration Probability

WKB-like expressions

Preformation factor

Hard to estimate

 $\log P_s \propto -2 \int dr \sqrt{2B(r)(E(r)-E_0)}$

 $B \sim reduced mass$ $E \sim \text{energy of the system}$

Half-life computation $\tau^{-1} = \nu \frac{1}{1 + \exp 2S}$

Half-life computation

Half-life computation $= \frac{\nu}{1 + \exp^{\prime}}$ **Assault Minimised integral action** frequency $\delta S = 0$ $S = \iint_{s}^{s_{out}} ds \sqrt{\mathcal{M}_{eff}(s)} (V_{eff}(s))$

$$(s) - E_0)$$

Half-life computation $\frac{\nu}{1}$ exp **Assault Minimised integral action** frequency $\delta S = 0$ $(S =) \int_{a}^{s_{out}} ds \sqrt{\mathcal{M}_{eff}(s)(V_{eff}(s) - E_0)}$

PES **Information about** energy cost of a path (Computed w/ RHB)

$$\mathcal{M}_{\text{eff}}(s) = \sum_{ij} \mathcal{M}_{ij} \frac{\mathrm{d}q_i}{\mathrm{d}s} \frac{\mathrm{d}q_i}{\mathrm{d}s}$$

$$\mathcal{M} = M_{(1)}^{-1} M_{(3)} M_{(3)}^{-1}$$

$$M_{(k)}]_{ij} = \sum_{\mu\nu} \frac{\langle 0|\hat{q}_i|\mu\nu\rangle \langle \mu\nu|\hat{q}_j}{(E_\mu + E_\nu)^k}$$

PES Information about energy cost of a path (Computed w/ RHB)

H. Wilsenach courtesy

