

First nuclear structure measurement at GANIL-SPIRAL2/NFS :

The study of the Pygmy Dipole Resonance via neutron inelastic scattering

Périne MIRIOT-JAUBERT – 2^{nd} year PhD student

Thesis director : Marine VANDEBROUCK

Contents

The study of the Pygmy Dipole Resonance (PDR) @ GANIL-SPIRAL2/NFS

<u>What, Why</u> and <u>How</u> to study the PDR ?

Why ? General motivation

Why ? General motivation

Why ? General motivation

Giant Resonances (GR)

- Collective excitation modes
 (majority of nucleons involved)
- Present in all nuclei
- Large cross-sections (= high probability)

Giant Resonances (GR)

- Collective excitation modes
 (majority of nucleons involved)
- Present in all nuclei
- Large cross-sections (= high probability)

Classification with the quantum numbers of the transition (ground state -> GR)

Macroscopic interpretation

Giant Resonances (GR)

- Collective excitation modes
 (majority of nucleons involved)
- Present in all nuclei
- Large cross-sections (= high probability)

Classification with the quantum numbers of the transition (ground state -> GR)

Macroscopic interpretation

Giant Resonances (GR)

- Collective excitation modes (majority of nucleons involved)
- Present in all nuclei
- Large cross-sections (= high probability)

Classification with the quantum numbers of the transition (ground state -> GR)

Macroscopic interpretation

The Pigmy Dipole Resonance (PDR)

- Low energy excited states in the dipole response
- Characteristic of neutron-rich nuclei
- Around the neutron separation energy threshold

Giant Resonances (GR)

- Collective excitation modes
 (majority of nucleons involved)
- Present in all nuclei
- Large cross-sections (= high probability)

Classification with the quantum numbers of the transition (ground state -> GR)

Macroscopic interpretation

The Pigmy Dipole Resonance (PDR)

- Low energy excited states in the dipole response
- Characteristic of neutron-rich nuclei
- Around the neutron separation energy threshold

Macroscopic interpretation :

oscillation of a neutron skin around an isospin symmetric core

Giant Resonances (GR)

- Collective excitation modes
 (majority of nucleons involved)
- Present in all nuclei
- Large cross-sections (= high probability)

Classification with the quantum numbers of the transition (ground state -> GR)

Macroscopic interpretation

The Pigmy Dipole Resonance (PDR)

- Low energy excited states in the dipole response
- Characteristic of neutron-rich nuclei
- Around the neutron separation energy threshold

Macroscopic interpretation :

oscillation of a neutron skin around an isospin symmetric core

Applications :

Astrophysical r-process - Nuclear equation of state - Neutron stars properties

Giant Resonances (GR)

- Collective excitation modes (majority of nucleons involved)
- Present in all nuclei
- Large cross-sections (= high probability)

Classification with the quantum numbers of the transition (ground state -> GR)

Macroscopic interpretation

The Pigmy Dipole Resonance (PDR)

- Low energy excited states in the dipole response
- Characteristic of neutron-rich nuclei
- Around the neutron separation energy threshold

General approach to study the nature of excitations : investigate the response to an external field

=> Performed with scattering experiments (X,X').

General approach to study the nature of excitations : investigate the response to an external field

- => Performed with scattering experiments (X,X').
- Different probes will not have the same ability to excite protons and neutrons
 - → Interest of a **multi-messenger investigation** of the PDR

General approach to study the nature of excitations : investigate the response to an external field

=> Performed with scattering experiments (X,X').

Different probes will not have the same ability to excite protons and neutrons

Interest of a multi-messenger investigation of the PDR

General approach to study the nature of excitations : investigate the response to an external field

=> Performed with scattering experiments (X,X').

Different probes will not have the same ability to excite protons and neutrons

Interest of a multi-messenger investigation of the PDR

Probe X Scattered probe X'

Contents

The study of the Pygmy Dipole Resonance (PDR) @ GANIL-SPIRAL2/NFS

X. Ledoux et al., Eur. Phys. J. A, 57;257 (2021).

PHENIICS Fest– P. Miriot-Jaubert

X. Ledoux et al., Eur. Phys. J. A, 57;257 (2021).

PHENIICS Fest– P. Miriot-Jaubert

6

The experimental setup – E833 experiment

Study of the PDR in the ¹⁴⁰Ce (~ 88% in ^{nat}Ce) :

^{nat}Ce(n,n')^{nat}Ce*(γ)^{nat}Ce

Cez

The experimental setup – E833 experiment

Study of the PDR in the ¹⁴⁰Ce (~ 88% in ^{nat}Ce) :

^{nat}Ce(n,n')^{nat}Ce*(γ)^{nat}Ce

MONSTER modules (x 48) : n' detection Liquid scintillators (BC501A / EJ301)

The experimental setup – E833 experiment

Study of the PDR in the ¹⁴⁰Ce (~ 88% in ^{nat}Ce) :

^{nat}Ce(n,n')^{nat}Ce*(γ)^{nat}Ce

MONSTER modules (x 48) : n' detection Liquid scintillators (BC501A / EJ301)

PARIS clusters (x 8) : γ detection Scintillation crystals (LaBr / CeBr + Nal) 8 clusters of 9 phoswiches

8

Pre-analysis timeline

8

Pre-analysis timeline

Pre-analysis timeline

Contents

The study of the Pygmy Dipole Resonance (PDR) @ GANIL-SPIRAL2/NFS

First results : the elastic scattering channel

^{nat}Ce(n,n')^{nat}Ce

→ Detection of the scattered neutrons **n**' with the MONSTER modules :

Neutron beam axis

First results : the elastic scattering channel

^{nat}Ce(n,n')^{nat}Ce

→ Detection of the scattered neutrons n' with the MONSTER modules :

Results :

Neutron beam axis

Contents

The study of the Pygmy Dipole Resonance (PDR) @ GANIL-SPIRAL2/NFS

1) γ selection in PARIS - **n'** selection in MONSTER in coincidence

1) γ selection in PARIS - **n'** selection in MONSTER in coincidence

2) Projection on the E_{γ} and E^* axes

1) γ selection in PARIS - n' selection in MONSTER in coincidence

2) Projection on the E_{γ} and E^* axes

3) Multipole Decomposition Analysis : selection of dipole states

1) γ selection in PARIS - n' selection in MONSTER in coincidence

2) Projection on the E_{γ} and E^* axes

- 3) Multipole Decomposition Analysis : selection of dipole states
- 4) PDR states and cross-sections

Thank you for your attention !

P. Miriot-Jaubert M. Vandebrouck D. Doré I. Matea X. Ledoux

PARIS and MONSTER collaborations

ANNEXES

Diffusion inélastique sur le Carbone

Diffusion inélastique sur le carbone : ${}^{12}C(n,n'){}^{12}C^*(\gamma){}^{12}C$ Etude de l'état excité à 4.439 MeV

Projection sur E*(12C)

Multipole decomposition

Microscopic calculations

Example of calculations: QRPA transition densities (Gogny D1M interaction) + DWBA calculations using a microscopic density-dependent potential model approach

(n.n

Link with experimental results

Transition density

$$\boldsymbol{M}_{\mathbf{p}(\mathbf{n})} = \int \rho_{\mathrm{fi}}^{\mathbf{p}(\mathbf{n})} (\mathbf{r}) \mathbf{r}^{\mathbf{L}+2} \, \mathrm{d}\mathbf{r}$$

Multipole moment Multipolarity of the transition

Can be more directly tested experimentally from the cross sections

Etalonnage des détecteurs - PARIS

Interest ? Nuclear structure and ...

Astrophysical r-process

- Wide open doorway states in the neutron-capture process
- Enhances radiative neutron capture rates
- Important role for nuclear
 abundances of elements formed via this process (A ~ 130)

A. Bracco, E.G. Lanza and A. Tamii, Phys. Rev. B 106, 360-433 (2019).

Nuclear Equation Of State (EoS)

- ► EoS : tool to describe nuclear matter $\frac{E}{A}(\rho, \delta) = \frac{E}{A}(\rho, 0) + S(\rho)\delta^2 + O(\delta^4)$
- Pygmy strength correlated to the symmetry energy in the EoS
- Implications for neutron-star properties

A. Carbone et al., Phys. Rev. C 81, 041301 (2010).