Search for radiative leptonic B^+ meson decays at LHCb

Fabian Glaser

Universität Heidelberg, Physikalisches Institut, Germany Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France

May 16th 2024

The LHCb experiment at the LHC

- Most powerful particle accelerator to date
- Located at CERN near Geneva
- 27km accelerator 100m underground
- Proton beams accelerated to 0.99999999c
- Four main experiments to record particle collisions

- One of four main experiments at the LHC
- Records proton-proton collisions at a rate of 40MHz
- Forward spectrometer
- LHCb is beautiful
- Designed to study decays of bound states including bottom quarks, e.g. B⁺(b

 ⁻μ), B⁰(b

 ⁻μ), Λ_b(udb)

Why build a forward spectrometer?

- *b* quarks are produced in pairs $b\bar{b}$
- Production in gluon-gluon fusion
- Likely asymmetric momentum
- Boosted in forward (or backward) direction
- Produce many B^+ mesons (lifetime 10^{-12} s)
- B^+ flies a few mm in the detector before decaying

LHCb tracking system

- Tracking system consists of VELO, TT, Magnet, T1-T3, muon stations
- For charged particles
- Estimate momentum from curvature

LHCb particle identification system

- Particle IDentification system consists of
 - Ring-Imaging Cherenkov (RICH) system
 - Electromagnetic and Hadronic Calorimeters
- Separation of $e^{\pm}, \pi^{\pm}, K^{\pm}, p, \pi^0, \gamma$

- Many particles produced in a single collision
- Lots of background events
- Recall: B mesons fly a few mm before decaying
- Search for displaced secondary vertices

LHCb Event Display

Event selection at LHCb

Fabian Glaser (IJCLab Orsay)

Search for radiative leptonic B^+ meson decays at LHCb

Radiative leptonic B^+ meson decays?

- B^+ meson is a bound state of a b and u quark
- Can only decay through weak interaction
- May decay to leptons e.g. $\mu^+ \nu_\mu$ (leptonic)
- Can have emission of an additional photon (radiative)
- $B^+
 ightarrow \mu^+
 u_\mu \gamma$ has never been observed
- Upper limit on the branching fraction from Belle experiment [PRD 98 (2018) 11, 112016]

 $\mathcal{B}(B^+
ightarrow \ell^+
u_\ell \gamma) < 3.0 imes 10^{-6}$ @90%CL

Leading order Feynman diagram for the decay ${\cal B}^+ \to \, \mu^+ \nu_\mu \, \gamma$.

Search for the decays $B^+
ightarrow \mu^+
u_\mu \gamma$ at LHCb

Why search for $B^+ \rightarrow \mu^+ \nu_\mu \gamma$?

- Golden mode to probe B^+ meson substructure
- Access parameter λ_B which encodes QCD effects of bound B^+ meson state
- Value not well known but vital theory input
- Strong dependence of the branching fraction on λ_B

Problem with $B^+ \rightarrow \mu^+ \nu_\mu \gamma$

- Cannot reconstruct B^+ decay vertex from single charged track
- Cannot constrain neutrino momentum
- $\Rightarrow\,$ Search for $B^+ \rightarrow \mu^+ \nu_\mu \gamma\,$ deemed impossible at LHCb

A way out

- Require photon conversion $\gamma \rightarrow e^+e^-$ in the VELO material
- Multiple charged tracks pointing to the B^+ decay vertex

A way out

- Neutrino momentum cannot be inferred from initial decay kinematics
- Correct for momentum imbalance perpendicular to B flight direction
- Require significant flight distance of B^+
- Excellent vertex reconstruction necessary

$$m_{corr} = \sqrt{m_{visible}^2(\mu^+\gamma_{ee}) + p_{\perp}^2} + p_{\perp}$$

 \Rightarrow Analysis becomes possible at LHCb

What am I working on?

- Using data recorded with LHCb experiment from 2016-2018
- Search for signal peak in mcorr
- Study simulation samples
- Selection of signal candidates
- Understand and model the backgrounds
- To not bias ourselves the analysis is blinded

Two peaks?

• Figured there is another decay of $B_c^+
ightarrow \mu^+
u_\mu \gamma$ possible

- No one has ever searched for it
- Not a single theory paper
- $\bullet\,$ Same final state $\rightarrow\,$ comes for free
- Only accessible by LHCb

Corrected mass distribution for $B^+_{(c)} \rightarrow \mu^+ \nu_\mu \gamma$ simulation. The grey area is the blinded signal region.

Summary

Hopefully, I could convince you that...

- $\bullet\,$ There are many obstacles on the way to search for radiative leptonic B^+ meson decays at LHCb
- Analysis of $B^+ \to \mu^+ \nu_\mu \gamma$ is possible at LHCb, despite being deemed impossible
- LHCb allows for a unique search of $B_c^+
 ightarrow \mu^+
 u_\mu \gamma$
- We are pushing the limits of the LHCb experiment with this effort
- Understanding the background shapes is key to this analysis
- There is still a lot of work to be done

