PERLE - France #4

PERLE Lattice Update and Specifications of Magnets

Single Turn layout and optics

19/06/2024

the PERLE project

▝▝▝▌▋▋▋

Alex Fomin

Alex Fomin

Three Dipole Merger (symmetrical Diagnostic Line) Fabry Perot (IP1) on the same side as Linac

<u>Special thanks to:</u> Alex Bogacz, Luc Perrot, Julien Michaud, Rasha Abukeshek, Coline Guyot, Ben Hounsell, Kirsten Deitrick, Raphael Roux, Denis Reynet, Sylvain Brault, Mohammed Abdillah, Hayg Guler, Frederic Bouly, Connor Monaghan, Walid Kaabi, Achille Stocchi et al.

PERLE - France #4

Alex Fomin

Installation phases Phase 2: PERLE 250 MeV version Phase 3: PERLE 500 MeV version 2031 2030 2029 2028

Updated PERLE Lattice 250 MeV version

19/06/2024

PERLE - France #4

Alex Fomin

Three Dipole Merger

19/06/2024

PERLE - France #4

Alex Fomin

Universite Paris-Saclay, CNRS/IN2P3, IJCLab (Orsay, France)

3 Dipole Merger: CBETA Design Report

19/06/2024

PERLE - France #4

Alex Fomin

A conceptual design of the PERLE injector was made within a collaboration between AsTeC-Daresbury, UoL and IJCLab.

19/06/2024

PERLE - France #4

Alex Fomin

Universite Paris-Saclay, CNRS/IN2P3, IJCLab (Orsay, France)

Spec

PERLE - France #4

Alex Fomin

Tuning M56 at Dog-Leg Merger: Q2 & Q4 \rightarrow closes the dispersion bump (dx, dpx = 0)

Universite Paris-Saclay, CNRS/IN2P3, IJCLab (Orsay, France)

PERLE - France #4

Alex Fomin

orizontal ertical	
	annananan an
	umanamenun
Δ <i>s</i> , m	

PERLE - France #4

Alex Fomin

3 Dipole Merger: vertical separation (Diag. Line is under the ERL)

Universite Paris-Saclay, CNRS/IN2P3, IJCLab (Orsay, France)

PERLE - France #4

PERLE: Single-Turn version

19/06/2024

PERLE - France #4

Alex Fomin

Universite Paris-Saclay, CNRS/IN2P3, IJCLab (Orsay, France)

PERLE Single-Turn version

Single-Turn "Simple"

- The simplest design to test the performance of cavities in ERL mode
 - minimal number of element (magnets, diagnostics)
 - ► 12 S-Bends of 33cm, 30° horizontal (0.472 T with 6 (of 12) upgradable to 0.907 T (for 500 MeV version)
 - ▶ 2 R-Bends of 15cm, 15° horizontal deflection (0.040 T)
 - 2 R-Bends of 30cm, 30° horizontal deflection (0.040 T)
 - smaller footprint: 21 m (vs 30 m)

19/06/2024

- Requires more for 250 MeV upgrade
 - Both Arcs would have to be relocated horizontally (by a few meters) and vertically (by 90 cm)

PERLE - France #4

Single-Turn "with B-Coms"

- Would require less for 250 MeV upgrade
 - one Arc has to be shifted by $\lambda_{\text{RF}}/4 \approx 9.4$ cm
 - higher energy lines could be attached on top at the B-Com magnet
- Is bigger than simple Single-Turn, with more complicated optics (+ vertical plane)
 - **+16 m** to the path length
 - +2 B-Com magnets of 33 cm, 0.451 T (vertical) with 1 (of 2) upgradable to 0.866 T (for 500 MeV version)
 - +6 S-Bends of 33cm, 0.472 T (vertical deflection) with 3 (of 6) upgradable to 0.907 T (for 500 MeV version)
 - +6 quadrupoles (<7 T/m)

Universite Paris-Saclay, CNRS/IN2P3, IJCLab (Orsay, France)

Alex Fomin

PERLE Single-Turn version optics: "Simple" → "with B-Com"

Single-Turn "Simple"

19/06/2024

PERLE - France #4

Alex Fomin

Single-Turn "with B-Coms"

PERLE Optics: M56 compensation in the Arc (ST vs 250 & 500 MeV)

Single-Turn "Simple"

250 MeV version (Arc1)

19/06/2024

PERLE - France #4

Alex Fomin

500 MeV version (Arc1)

Switchyards: Geometry vs Cavity boost (82 → 18 MeV / pass)

Switchyards: Geometry vs Cavity boost (82 → 41 MeV / pass)

PERLE: Single-Turn version

19/06/2024

Upgradability to 250 & 500 MeV

PERLE - France #4

Alex Fomin

PERLE Upgradability for 500 MeV — Types and Number of Dipoles

	Angle, pl.	Angle, pl. 30° hor. 15° hor								30° vert.	30 °		
	Туре			S-E	Bend			R-E	Bend	B-Com	S-E	•••	
versions	Length		33 cm			66 cm		15 cm	30 cm	33 cm	33	•••	
	Place	Arc1	Arc2	Arc3	Arc4	Arc5	Arc6	Inj & Dum	np chicane	Spreader	Spr. Arc1	Spr. Arc2	
Single-Turn (simple)		0.47	0.47							0.45			
Single-Turn (with B-Coms)		0.47	0.47								0.47	0.47	
250 MeV (3 turns, 1 cryo)	Field, T	0.47	0.47	0.91	0.45	0.67	0.67	0.	.04	0.45	0.47	0.47	•••
500 MeV (3 turns, 2 cryo)		0.47	0.91	1.34	0.89	1.11	1.32				0.47	0.91	•••
		1.34			1.32						0.	.91	
Single-Turn (simple)			12					5	2	0		0	0
Single-Turn (with B-Coms)	N h a se h a se		12					5	2	2		6	0
250 MeV (3 turns, 1 cryo)	Number -	nber 18			18			5 2		2	6		•••
500 MeV (3 turns, 2 cryo)		18				18		5	2	4	1	12	•••

We propose to group S-Bend dipoles of the Arcs in 3 types:

- type 1: 18 dipoles (12 for Single-Turn), magnetic length: 33 cm, deflection angle: 30° horizontal, magnetic field range: 0.47–1.34 T
- type 2: 18 dipoles (0 for Single-Turn), magnetic length: 66 cm, deflection angle: 30° horizontal, magnetic field range: 0.45–1.32 T
- type 3: 12 dipoles (6 for Single-Turn with B-Com), L = 33 cm, deflection angle: 30° vertical, magnetic field range: 0.47–0.91 T

PERLE - France #4

Alex Fomin

Is it worth combining the groups?

- type 1 + type 2: 45 cm, 30°, with wider field range
- type 1 + type 3: 30 cm, 30°, same design for hor. and vert.

Universite Paris-Saclay, CNRS/IN2P3, IJCLab (Orsay, France)

Types of dipoles for PERLE defined by geometry and size

Туре	Name	Plane		Num	ber		Function	Geometry	L, cm	B	, T	I, mA
			ST	ST+BC	v.250	v.500				min	max	max
1	Chicane 15cm	hor.	4	4	4		Injection and Dump merger/correctors/spreader	R-Bend	15	0.040		120
2	Chicane 30cm	hor.	2	2	2		corrector with double length and inverted field (w.r.t. Type 1)	R-Bend	30	0.040		120
3	B-Com 3-lines	vert.	0	2	2	4	spreaders/mergers for 3 energy lines (for all Arcs)	R-Bend	33	0.451	0.866	120
4	B-Com 2-lines	vert.	0	0	2	4	spreaders/mergers for 2 energy lines (for Arcs 3, 5 & 4, 6)	R-Bend	33	0.451	0.866	80
5	R-Bend 33cm	vert.	0	0	8	16	spreaders (one energy line) for Arcs 3, 4, 5 & 6	R-Bend	33	0.451	0.873	40
6	C. Dand 22am	vert.	0	6	6	12	spreaders (one energy line) for Arcs 1 & 2	S-Bend	33	0.472	0.907	40
6	S-Bend 33cm	hor.	12	12	18	3	180° turn of the Arc 1, 2, 3 (6 dipoles per Arc)	S-Bend	33	0.472	1.342	40
7	S-Bend 66cm	hor.	0	0	18	3	180° turn of the Arc 4, 5, 6	S-Bend	66	0.453	1.323	40
Total			18	26	60	78				1		

Total number of dipole

19/06/2024

- 19 dipoles for Single-Turn version (simple)
- 27 dipoles for Single-Turn version (with B-Coms)

PERLE - France #4

- 61 dipoles for 250 MeV version
- 79 dipoles for 500 MeV version

There are 7 types of magnets defined by geometry and size

• the required magnetic field might vary by the factor 2-3 within the same Type of dipole

Alex Fomin

horizontal at the Arcs — Can it have the same dipole design?

"S-Bend 33cm" at the Spreader/Merger sections is in vertical orientation and in

Universite Paris-Saclay, CNRS/IN2P3, IJCLab (Orsay, France)

250 MeV	T/m 0	.2 2	.6 6	.4
	7 MeV	15		
	89 MeV	9	34	
	171 MeV	2	9	6
	253 MeV			6
	All	26	43	12

	T/m 0).2 2	. <mark>6</mark> 6	.4 8	. <mark>2</mark> 1	9 2	23 4	3 50	6 total
	7 MeV	15							
500 MeV	89 MeV	4	21						
	171 MeV	4	4	4	13				
	253 MeV		2	14		2	8		
	336 MeV				12	2	12		
	418 MeV				6	2	12		
	500 MeV				2	2	12	10	
	All	23	27	18	33	8	44	10	163

PERLE - France #4

19/06/2024

Alex Fomin

Air cooled quadrupoles

- Dimensions, cm: 15 x 15 x 15
- Gradient, T/m: 0.2 < ... < 2.6
- number: **26** (for 250 MeV) and **23** (for 500 MeV)

Water cooled quadrupoles

- Dimensions, cm: 15 x 15 x 15
- Gradient, T/m: 2.6 < ... < 6.4
- number: 43 (for 250 MeV) and 27 (for 500 MeV)
- if gradient of < 8.2 T/m is ok
 - ➡ number of quads for 500 MeV is 45

from CBETA TDR:

Quad-Air	Quad-V
$15 \mathrm{x} 15 \mathrm{x} 15$	$15\mathrm{x}15$
44	20

PERLE project could use: 26

Three Dipole Merger

- Symmetrical Diagnostic Line → know the beam parameters before the 1st acceleration
- Possible to control compaction factor

Fabry Perot (IP1) on the same side as Linac

- Determined by X-ray extraction line
- Spreader is extended to host Fabry Perot (2.4m space available)
- Recombiner is shortened, Arcs are aligned (optimal space occupancy)

Single Turn layout and optics

- Arcs are tuneable (M56 compensation) for all version
- Test the Linac performance at Single Turn → Finalise the geometry
- 67% less magnets needed

PERLE - France #4

Ongoing

• Define the dimensions of Booster Cryo-Module

Alex Fomin

- ➡ adjust the lattice to fit in the IGLOO building
- Implementation of diagnostics to the lattice

Universite Paris-Saclay, CNRS/IN2P3, IJCLab (Orsay, France)

PERLE: Lattice design and beam dynamics studies

Thank you !

19/06/2024

PERLE - France #4

Alex Fomin

Universite Paris-Saclay, CNRS/IN2P3, IJCLab (Orsay, France)

PERLE - France #4

Back Up

Universite Paris-Saclay, CNRS/IN2P3, IJCLab (Orsay, France)

PERLE Lattice with symmetrical Diagnostic Line & Fabry Perot (IP1)

19/06/2024

PERLE - France #4

Alex Fomin

Dog-Leg Merger: Tuning M56 & closing dispersion bump

19/06/2024

PERLE - France #4

Alex Fomin

Tuning M56 at Dog-Leg Merger: $Q2 \& Q3 \rightarrow closes$ the dispersion bump (dx, dpx = 0)

New labelling convention. Table: Section, Subsec. (objective), Name

Section	า		Subsection		E3	E2	E1	E0		Sectio	n		Subsection		E3	E2	E1	Sectio	า		Subsectior	ו	E3
					bC1A1_#				_						bA5A1	bA3A1	bA1A1						bA6A1
		A	Inj. chic.	x, px	bC1A2_#				_			<u>۸</u>	b 1 3a		qA5A1	qA3A1	qA1A1			Δ	h + 3a		qA6A1
					bC1A3_#								p + 9d		qA5A2	qA3A2	qA1A2			Α	b + 5q		qA6A2
		B	2q	20	ß	qC1B1_#									qA5A3	qA3A3	qA1A3						qA6A3
				ρ	qC1B2_#							D	b , a		bA5B1	bA3B1	bA1B1			R	b , a		bA6B1
					cC1C1_#							D	p + d		qA5B1	qA3B1	qA1B1			D	D+Q		qA6B1
Common C	<u>C1</u>		QDE		cC1C2_#								b - 2a		bA5C1	bA3C1	bA1C1					v	bA6C1
	U1		SNF		cC1C3_#						A1	0		X,	qA5C1	qA3C1	qA1C1		A2	C	b y 3a	X, dv	qA6C1
					cC1C4_#					Odd Arcs	A3		p + od	ux, ß	qA5C2	qA3C2	qA1C2	Even Arcs	A4		pc + a	ax,	qA6C2
			2q	ß	qC1D1_#						A5			р, r56	qA5C3	qA3C3	qA1C3		A6			р, - r56	qA6C3
				Ρ	qC1D2_#								h , a	100	bA5D1	bA3D1	bA1D1			D	b+a	100	bA6D1
			Dump		bC1E1_#								p + q		qA5D1	qA3D1	qA1D1				ντΥ	_	qA6D1
		E	chic	x, px	bC1E2_#										bA5E1	bA3E1	bA1E1						bA6E1
			chie.		bC1E3_#							Е	b 2a		qA5E1	qA3E1	qA1E1			F	b - 3a		qA6E1
		Δ	B-Coms	Coms y	bS3A1_#	×1_#						b + oq		qA5E2	qA3E2	qA1E2				b i oq		qA6E2	
					bS3A2_#		bS1A2								qA5E3	qA3E3	qA1E3						qA6E3
						qS2B1	qS1B1					F	F b		bA5F1	bA3F1	bA1F1			F	b		bA6F1
		В	Зq	dy		qS2B2	qS1B2					Δ	20										qR3A1
						qS2B3	qS1B3						29							Δ	40	ß	qR3A2
	Q1	C	2h	V	bS3C1	bS2C1	bS1C1													7	тЧ	Р	qR3A3
Spreader	S2		20	У	bS3C2	bS2C2	bS1C2				L1	В	Зq	β									qR3A4
	53				qS3D1	qS2D1	qS1D1			Lines	L2								R1	B	2h	V	bR3B1
	00	П	40	ß	qS3D2	qS2D2	qS1D2				L3		20					Recombiner	R2	0	20	У	bR3B2
			тЧ	Р	qS3D3	qS2D3	qS1D3						<u> </u>						R3				
					qS3D4	qS2D4	qS1D4					П	20	IP						С	3q	dy	
					qS3E1																		
		E	Зq	3q IP	qS3E2														D	B-Coms	V	bR3D1_	
					qS3E3																	<i>y</i>	bR3D2_

19/06/2024

PERLE - France #4

Alex Fomin

bA4A1

qA4A1

qA4A2

qA4A3

bA4B1

qA4B1

bA4C1

qA4C1

qA4C2

qA4C3

bA4D1

qA4D1

bA4E1

qA4E1

qA4E2

qA4E3

bA4F1

qR2A1

qR2A2

qR2A3

qR2A4

bR2B1

bR2B2

qR2C1

qR2C2

PERLE - France #4

19/06/2024

Alex Fomin

- doublets after the chicane \rightarrow measure and energy spread

00000

PERLE - France #4

Alex Fomin

Diagnostic Line at the Dump. Uri **p** chicane as Spectrometer

PERLE - France #4

Alex Fomin

~ 335 m

