

Istituto Nazionale di Fisica Nucleare

R&D on Detectors FN

Alberto Quaranta

President CSN5 University of Trento INFN-TIFPA (Trento)

1

Scientific Commissions

Role of Scientific Commissions

- They develop proposals for scientific programming and related financial estimates.
- They provide opinions on the scientific and technological aspects as well as opinions on the financial and organizational aspects of individual research proposals.
- They provide the evaluation and annual report of the activity carried out by each research initiative.
- They have its own fundings to distribute to the projects according with the decision of internal reviewers.

Structure

Strategies

- Periodic meetings (2-4/y)
- Discussion about the approval and funding of new experiments/projects.
- Discussion about the state and the continuation of ongoing projects.
- Discussion about final reports of closing experiments.

Selection and Reviewing

CSN1 Research Lines

Nhusiaa at lladran Gallidara
Physics at hauron connuers
ATLAS
CMS
FASE2_ATLAS
FASE2_CMS
LHCf
SNDLHC

BELLE2 BESIII LHCb NA62

Others RD_FLAVOUR **SHADOWS** DUNE

CSN2 Research Lines

Radiation from the Universe AMS2

AUGER CTA FERMI GAPS HERD_DMP KM3 LIMADOU_CSN2 LITEBIRD LSPE QUBIC RESNOVA_CSN2 SPB2

SWGO

XRO

Gravitational Waves, General and Quantum Physics

S

ARCHIMEDES2 ET_ITALIA GINGER GRAFIQO LISA MEGANTE2 MOONLIGHT-2 ATOR_G VIRGO Dark Universe BULLKID_DM COSINUS_CSN2 CRESST CYGNO DAMA DARKSIDE EUCLID NEWS QUAX SABRE XENON

Neutrino Physics

CUORE_CUPID ENUBET2 GERDA HOLMES2 JUNO KATRIN_TRISTAN NUCLEUS T2K

President: Paolo Giubellino

CSN3 Research Lines

NA60_PLUS

Nuclear Astrophysics

ASFIN2 ERNA2 LUNA3 N-TOF PANDORA_GR3 Nuclear Structure and Reaction Dynamics CHIRONE FORTE GAMMA NUCLEX NUMEN_GR3 PRISMA-PHYDES

Quark and Hadron Dynamics

EIC_NET JLAB12 KAONNIS MAMBO REST ULYSSES

Symmetries and Fundamental Interactions

Famu

JEDI

LEA

VIP

Applications and Society Benefits

FOOT

CSN4

President: Fulvio Piccinini

FLAG GAGRA GAST GSS NPQDC QGSKY SFT ST&FI

Mathematical Methods

BELL DYNSYSMATH GEOSYM_QFT MMNLP QUANTUM

Particle Physics Phenomenology

AMPLITUDES APINE ENP LQCD123 PML4HEP QCDLAT QFT@COLLIDERS SPIF TPPC

Astroparticle Physics and Cosmology INDARK

NEUMATT QUAGRAP TASP

TEONGRAV

Hadronic and Nuclear Physics

MONSTRE NINPHA NUCSYS SIM

Statistical and Applied Field Theory BIOPHYS ENESMA FIELDTURB TIME2QUEST LINCOLN

CSN5

President: Alberto Quaranta

Sensor

Wire Bonding

ASIC

Pump

CSN5 Research Lines

Accelerators

HB2TF (CALL)

PLASMA4BEAM2

ASTRACT

CROWN

FUSION

HISOL

IONS

PBT

HSMDIS

MICRON

SAMARA

SIG (CALL)

SL BETATEST

ALPHA DTL BETA

Detectors, Computation and Electronics

4DSHARE ADA 5D ANNA DARTWARS (CALL) FEROCE HASPIDE (CALL) **IBIS NEXT** LITE-SPLD MANIFOLD MOONLIGHT NGSA (CALL) OPTIME PHYDES QUANTEP (CALL) **RD PTOLEMY** RIPTIDE SHINE UNIDET

ACROMASS ANEMONE ASTAROTH DIODE **GEANT4INFN** HIDRA2 (CALL) IONOTRACK MAG uRTUBE (G) N3G (CALL) PRAD OREO PREDATOR (G) QUB IT RHUM ROUGE (G) UTMOST

Interdisciplinary Research

ADMIRAL ARES (G) BEYOND (G) BRAINSTAIN CHNET MAXI DIDO (G) EPISE FRIDA (CALL) MEDIPIX4 MIRO NAMASSTE PRAD SAMADHA SPHERE-X SPOC VI HI

AI INFN ARTEMIS BIOHOT CHNET BRONZE CUPRUM TTD DISCOVER22 **ETHIOPIA** HARDLIFE MATHER3D MUSICA (G) NGSA (CALL) **RESILIENCE (G) SEGNAR** SPHINX T4QC WIDMAPP

R&D @INFN on Detectors

- Activities developed and fundend by Scienfic Commissions.
- Expertise grown inside INFN.
- Over time, technological research has expanded beyond applications for high energies.
- Commission 5 devoted to R&D and «blue-sky» technologies.
- Interdisciplinary interests: e.d. medical physics, quantum technologies.

HEP Detectors

Università degli Studi

3D Sensors: a road from the idea to the application

ADVANTAGES:

- Low depletion voltage (low power diss.)
- Short charge collection distance:
 - Fast response
 - Tracking
 - Less trapping probability after irr.
- Lateral drift → cell "shielding" effect:
 - Lower charge sharing
 - Low sensitivity to magnetic field
- Active edges

≽ Gian Franco Dalla Betta – Trento

S. Parker et. al. NIMA 395 (1997) 328

Electrode distance (L) and active substrate thickness (Δ) are decoupled \rightarrow L<< Δ by layout

High radiation hardness at relatively low voltage (power) → Main application in HEP

DISADVANTAGES:

- Non uniform spatial response (electrodes and low field regions).
- Higher capacitance with respect to planar (~3x for ~ 150 mm thickness).
- Complicated technology (cost, yield).

Università degli Studi

di Trento

INFN 3D Sensor Developments with FBK (1)

- Gian Franco Dalla Betta Trento
- INFN CSN5 TREDI (2005-2008)
- → Single-Type-Column (STC)
- → Double-Sided, Double-Type Column (DDTC)
- INFN CSN5 TRIDEAS (2009-2012)
- → Double-Sided, Double-Type Passing Through Column (DDTC+)
- INFN CSN1 ATLAS (2010-2012)
- → Production for the ATLAS Insertable B-Layer using DDTC+ technology

INFN 3D Sensor Developments with FBK (2)

Gian Franco Dalla Betta – Trento

- FBK upgrade of the clean room to 150 mm diameter wafers (2013)
- INFN CSN1 RD_FASE2 (2014-2017) + AIDA2020 (2015-2020)
- → Joint ATLAS/CMS R&D for thin, small-pitch 3D pixels aimed at Phase2 upgrades
- → Due to small active thickness, single-sided technology with handle wafer while preserving back-side bias (Si-Si Direct Wafer Bonded substrates)
- INFN CSN1 RD_FASE_ATLAS and FASE2_CMS (2018-today)
- \rightarrow Experiment-specific finalizations of 3D pixel developments
- → Currently in Production (for ATLAS ITk) and Pre-Production (for CMS)
- INFN CSN5 TIMESPOT (2018-2021) + AIDAInnova (2021-today)
- → Besides radiation hardness, 3D pixels also offer outstanding timing performance
- → Best results with trenched electrodes (~10 ps both before and after irradiation up to 2.5x10¹⁶ n_{eq}/cm²) on test structures.
- INFN CSN1 LHCb (since 2022)
- \rightarrow Aims at timing optimization with columnar 3D for LHCb VELO upgrade.

Main target:

Develop and realize a demonstrator consisting of a complete yet simplified tracking **System**, integrating about 100-1000 read-out channels (pixels), satisfying the following characteristics:

- Space resolution: O (10 µm)
- Radiation hardness: > 10^{16} 1 MeV n_{eq}/cm^2 (sensors) and > 1 Grad (electronics)
- Time resolution: ≤ 50 ps per pixel (target ≈ 30 ps)
- Real time track reconstruction algorithms and fast read-out (data throughput > 10 TB/s)

TimeSPOT pixel (size 55x55x150 µm³) ~2 fC MPV

trench electrodes: SEM image from TimeSPOT production batch#2 (Dec 2020)

Activities are organized in 6 work packages:

- 1. 3D silicon sensors: development and characterization (GF. Dalla Betta Trento)
- 2. 3D diamond sensors: development and characterization (S. Sciortino Firenze)
- 3. Design and test of pixel front-end (V. Liberali Milano)
- 4. Design and implementation of real-time tracking algorithms (N. Neri Milano)
- 5. Design and implementation of high speed readout boards (A. Gabrielli Bologna)
- 6. System integration and tests (A. Cardini Cagliari)

Sezioni INFN: Bologna, Cagliari, Genova, Ferrara, Firenze, Milano, Padova, Perugia, Torino, TIFPA. ≈ 60 heads, ~ 20 FTE. People from **LHCb, ATLAS, CMS + others**

🟲 Fabrizio Palla – Pisa

<u>Hybrid</u> integration of <u>Silicon Photonics modulators</u> with high-speed radiation hard (≥1 GRad) electronics in 28 nm **and** <u>front-end</u> readout

Aggregated 100 Gb/s links using wavelength division multiplexing (4 wavelengths on a single optical fibre) and Integrated Front-End electronics

Table 1: Technology benchmarks and envisioned performance improvement with FALAPHE				
	State of the art – VCSEL+	This project (FALAPHEL)		
Data rate	10 Gb/s	≥100 Gb/s		
Radiation TID	200 Mrad (2 MGy)	≥1 Grad (10 MGy)		
Total Fluence	10 ¹⁵ n/cm ²	>5 x 10 ¹⁶ n/cm ²		

WDM allows to modulate different wavelengths sent over the same physical channel, instead of using multiple fibers for each communication

Target data rate 10 Gb/s

SER_V2 (DDR - CML)

20 Gb/s

(DDR - CMOS)

20 Gb/s

SER_V3

PICv1 SiPh Modulators for HEP IMEC iSipp50G

28 nm HPC+ TSMC Target data rate 25 Gb/s TID 1 Grad

Fabrizio Palla – Pisa

(starting) Results

CMOS 28-nm Timespot1 ASIC

Distribution of the TA standard deviation across 1024 channels and 7 phases. Each point is computed from 100 repeated measurements.

Scaltech28 28nm rad hardness

Vision/concept of a cut of the **IGNITE** system module

Target deliverable of the **IGNITE** project:

- A complete module (sensor, read-out ASIC, vertical IC, photonic circuit for data links, cooling system)
- The module development as a route to optimize material budget issues and High Density Interconnectivity between the device stages
- The whole thing below 0.8 (LHCb) \div 0.5 (NA62) % X₀

Status (4D-trackir	ıg)	IGNIT_LE	Istituto Nazionale di Fisica Nucleare	Adriano Lai - Cagliari Target	
Space resolution	σ _s ≈ 15 μm (55	μm pitch)	σ _s < 10	μm (smaller pitch, clustering)	
Time resolution	$ σ_t ≈ 10 ps (sensent for sensent for sensent for sensent for sensent for sensent for sensent for sense the sense s$	or only) F TDC only) tem)	σ _t ≈ 10 σ _t < 30 σ _t < 50	ps (sensor only) ps (F/E + TDC only) ps (system)	
Data Bandwidth	BW ≈ 10 Gbps per chip BW ≈ 20 Gbps per Ser/Driver		BW ≈ 1 BW ≈ 2	BW ≈ 100 Gbps per chip (with data reduction on F/E) BW ≈ 25 Gbps per Ser/Driver	
ASIC area size	A ≈ 3 mm ² , not abuttable		A ≥ 2 c	A ≥ 2 cm ² , 3- or (preferably) 4-side abuttable	
Power density	P' ≈ 2 W/cm ² (with timing) P' ≈ 1 W/cm ² (without timing)		P' < 1. P' < 1	P' < 1.5 W/cm ² (with timing) P' < 1 W/cm ² (without timing)	
Rate/pixel	N/A		50 - 30	50 - 300 kHz (depending on pitch)	
Rad hardness	2.5 10 ¹⁶ 1 MeV ≥ 1 Grad (CMO	' n _{eq} cm ⁻² (sensor) S 28nm estimate)	≈ 5 x 10 ≥ 1 Grad	¹⁶ 1 MeV n _{eq} cm ⁻² (sensor) d (CMOS 28nm estimate)	

4DSHARE (CSN5)

Roberta Arcidiacono - Torino.

- The introduction of internal moderate gain: Low-Gain Avalanche Diode (LGAD)
 - It provides large signals with short rise time and low noise, ideal for timing
- Intrinsic charge sharing:

Resistive AC-coupled read-out LGAD (AC-LGAD or RSD)

- It provides intrinsic signal sharing, which is a key ingredient to excellent spatial resolution using large pixels
- **100% detector efficiency**, 100% Fill Factor, reduced material budget and **enhanced timing performance**
- the coordinates are reconstructed exploiting the charge sharing amongst neighboring electrodes
- State-of-the-art RSDs at gain = 30 achieve a spatial resolution of about 3-4% of the pitch size
- Oxide layer for AC-coupling is removed, read-out electrodes implanted onto the resistive layer
- Inter-pad resistors (or isolating trenches) added to create a "cage" where the signal is confined
- Signals are read out via the closest DC electrodes; leakage current removed at each electrodes

28

ADA_5D project Charge & Timing 5D detector: x,y,z, charge, time

Development of a pixelated ToF detector with 100 ps time resolution (based on LGAD sensors) for the rejection of Backscattering (BSC) and the charge identification of CR elements with

atomic number up to Z=30 in space experiments.

Charge measurement:

- large dynamic range > 1000 m.i.p.
- charge resolution for proton < 0.1
- => 200-300 μ m thick sensors

Timing measurement:

Pier Simone Marrocchesi - Pisa.

- sub-ns resolution (e.g., for 20 cm flight path \rightarrow 100 ps is required)

Space resolution and granularity:
 modest granularity (3mm x 3mm pixels) to cover large O(m²) sensitive area

1.00E-09

1.00E-11

1.00E-12 + 25

35 Reverse Bias [V]

- 1. Design new cell (must limit Crosstalk, AfterPulse, Dark Count rate) DONE
- 2. Bulk removal (keeping flat surface: < 1 μ m) DONE
- 3. Plasma doping on backside (dopant)
- 4. Laser annealing (activation of dopant)

ARCADIA

Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays

Manuel Dionisio Da Rocha Rolo - Torino

*

- ARCADIA: customized 110nm CMOS sensor design and fabrication platform on LF11is technology
- Sensor R&D and Technology, CMOS IP Design and Chip Integration, Data Acquisition
- MD3: system-grade full-chip FDMAPS for Medical (pCT), Future Leptonic Colliders and Space Instruments
- Scalable FDMAPS architecture with very low-power: 10 mW/cm²
- Fully-depleted monolithic active micro strips with fully-functional embedded readout electronics
- Ongoing R&D for the implementation of monolithic CMOS sensors with gain layer for fast timing
- Custom BSI process allow to develop fully-depleted thick sensors (400µm) for soft X-ray imaging

ARCADIA

ARCADIA

ARCADIA

- Pixel size 25 μ m x 25 μ m, Matrix core 512 x 512
- 1.28 x 1.28 cm² silicon active area, "side-abuttable"
- Triggerless data-driven readout, clockless pixel
- Event rate up to 100 MHz/cm²)
 - High-rate operation (16 Tx)*: 17-30 mW/cm²
 - Low-power operation (1 Tx): 10 mW/cm²

Incremental map 100 300

²⁴¹Am

3

PHI - Programmable High-energy-hadron fluence monitors

R. Giordano - PHI

Raffaele Giordano - Napoli

- PHI's idea: SRAM-based (Static Random Access Memory) FPGA as a compact hadron fluence counter
 - Configuration SRAM (CRAM) for sensing + programmable fabric for readout
- Compact and low-power (~0.7 W) system [1]
 - Only COTS components, radiation-hardened by design (RHBD)

PHI - Proton Beam Test Results

Raffaele Giordano - Napoli

- σ(Energy, V_{DD}) monoenergetic protons, tunable energy in 70-228 MeV range
- Six samples tested, average
 - fluence $2.1 \cdot 10^{12} \text{ p/cm}^2$ per sample
 - $flux 6.7 \cdot 10^8 p/(cm^2 s)$
- First usage of an FPGA to image a proton beam

IIRANIA-V

Giovanni Bencivenni - LNF

Resistive Gaseous Detectors for thermal neutron detection

N3G: Next Generation Germanium Gamma detectors

Davide De Salvador – LNL

Schematic coaxial segmented *p-type* detector

FBK Sensors & Device Center

https://sd.fbk.eu/en/

Maurizio Boscardin – FBK – Trento

FBK-SD-CRS Silicon Detectors Technologies

Maurizio Boscardin – FBK – Trento

Detectors for Space

SWEATERS Federico Pilo – Pisa (Space WEATher Ena Radiation Sensor)

Development of an INNOVATIVE instrument to detect low energy atoms (1-100 keV), such as Energetic Neutral Atom (ENA) for Magnetospheric Imaging

in Space

	Nice to have
Angular res.	$5^{\circ} x 5^{\circ}$
Energy range	[1-100] keV
Energy resolution	20%
Expected particle flux	$10^2 - 10^5 (\mathrm{cm}^2\mathrm{ssr})^{-1}$
Mass channels	H, He, O discrimination

- HOW: using a «gas calorimeter» based on Micro-Pattern Gas Detector (MPGD) technique and a read-out system able to provide a 3D track reconstruction of the particles
- Low-cost fabrication together with the robustness of the electrode materials of MPGD make it extremely attractive for harsh environment (like a space mission)

SWEATERS detector concept

Muon tracks at NTP in the SWEATERS detector. Clustering and μTPC tecniquies used for track reconstruction

detector and electronics

R&D

INFŃ

SWEATERS - R&D status

Federico Pilo - Pisa

- ✓ The MPGD technology, specifically MICROMEGAS, has been selected: MICROMEGAS.
- ✓ It has been demonstrated that MICROMEGAS can operate effectively at low pressure levels, down to 50 mbar
- ✓ The detector can detect ionized atoms with energies below keV for light atoms
- Measurement of atom energies with adequate resolution has been achieved
- R&D efforts on the detector windows and direction reconstruction strategies are currently ongoing

A dedicated facility for SWEATERS and UTMOST programs

VPP DEEP PI 0 5820

- H, He, N ion beams with energies up to 5 keV
- <u>Space Environment Simulation and</u> <u>Calibration</u> for the **SWEATERS** detectors (with Micro positioning stages and differential pumping)
- UTMOST <u>ultra-thin membranes</u> <u>characterization</u> with ions (transparency, charge state, angular scattering)

UTMOST (UlTrathin Materials fOr gaSeous deTectors)

Integrating ultra-thin material-based technologies into a highly INNOVATIVE GAS DETECTOR

Federico Pilo - Pisa

UTMOST – R&D Status

Started 2024, 3 years, CSN5 financed

Studies on CARBON FOIL as Entrance Window

- Differential pressure test and optimization of mechnical support structures
- GOAL: > 100 mbar without any damage

Studies on GRAPHENE and Si3N4 FOILS for the Ultra-thin Electrode

- Electron transparency test
- GOAL: >50% even for energies of a few eV

A long history of X-rays detectors

≽ Massimo Minuti - Pisa

from a first step in CSN5 ... to the IXPE mission in orbit

X-ray energy, polarimetry and timing measurement in the 2-8 keV energy range at Low Earth Orbit (LEO)

A long history of X-rays detectors

The XPOL readout chip

≽ Massimo Minuti - Pisa

Technology	180nm CMOS
Active Area	15.2 X 15.2 mm^2
Number of pixels	107.008 (304 X 352)
Physical pitch	50 um
Shaping time	1us
Pixel Noise (ENC)	30 e-
Full scale linear range (FSLR)	30 ke-
Minimum trigger threshold	150 e-
Maximum Readout Freq.	20MHz

48

Self triggering, event-driven analog readout.

Position, Energy and Time of Arrival in one shot!

Cryogenic detectors development and test

INFN Pisa and Physics Department

- 50 m² ISO7 cleanroom (classe 10000) + sub-Kelvin test facilities
 - spin coater, optical lithography (also maskless) thermal evaporation, RIE
 - 3-He sorption fridge, 1 dry dilution fridge + 1 being procured
- KIDs for dark matter, TESs for particle physics and Cosmic Microwave Background, superconducting QuBITs, parametric amplifiers, Rydberg atoms
- Readout electronics, SQUID tests, cryogenic LC filters, multiplexing
- Tests with optical and radioactive sources
- Synergistic activity b/w HEP, solid state research and teaching

PISA LAB

BULLKID: BULky and Low-threshold Kinetic Inductance Detector

- **<u>Goal</u>**: development of a monolithic multipixel array of phonon detectors for Coherent Neutrino Scattering and light WIMP-like particle
- **Method:** Implementation through carving on a thick Si wafer of dices, sensed by phononmediated KIDs.
- Variation of the kinetic inductance in superconductors to detect dark matter

Zo

- Large mass detectors with natural multiplexing readout
- Each channel includes a LC resonator tuned at different frequency.

Angelo Cruciani – Roma Carving of dices in a thick silicon wafer

Lithography of multiplexed KID array

Andrea Mazzolari Ferrara

- 4.5 mm deep grooves
 - 6 mm pitch
 - chemical etching

0.5 mm thick common

- disk:
 - holds the structure
 - hosts the KIDs

KID array

- 60 nm aluminum film
- 60 KIDs lithography

BULLKID: BULky and Low-threshold Kinetic Inductance Detector

Angelo Cruciani – Roma

• <u>Achievment:</u>

- developed a 60 pixel array with energy threshold of 160 eV
- Single pixel does not exhibit excess down to the threshold

• <u>Timeline</u>

2019-23: R&D supported by INFN and Sapienza

2023: Awarded with a CoG ERC (HI: Sapienza, Ben: INFN, CNRS)

2024 -: Started experiment (INFN, CNRS, KIT, UNAM) for the search of light WIMP-like particles at Gran Sasso.

Quantum Sensors

Development of high performing parametric amplifiers following two different promising approaches (KI-TWPA, JTWPA) and exploring new design solutions, new materials and advanced fabrication proceedses;

Readout demonstration of various detectors/components (TESs, MKIDs, microwave cavities and qubits) with improved performances due to a parametric amplification with a noise at the quantum level

0.5 cm

Claudio Gatti - LNF

zionale di Ricerca in HPC,

Big Data and Quantum Computing

Main Objective:

Realization of an itinerant single-photon counter that surpasses present devices in terms of efficiency and low dark-count rates by exploiting repeated QND measurements of a single photon and entanglement in multiple qubits.

Specific Objectives:

Synergies with:

SUPERCONDUCTING QUANTUM MATERIALS & SYSTEMS CENTER

- 1. Design and simulation of SC qubits coupled to resonators
 - 2. Fabrication of circuits with SC qubits
- 3. Single-shot measurement of SC qubits with quantum amplifier
 - 4. Control of SC qubits with FPGA board
 - 5. Quantum sensing experiments with entangled qubits

Cryogenic measurements

Quantum Amplifiers

Superconducting circuits

Superconducting Qubits in a 3D Cavity

Qubit in 3D cavity from external collaborations

6.4205 6.4200 6.4195 6.4190 6.4185 6.4180 1 2 3 4 5 6 1 [µs]

6.4210

Qubit characterization

UNIDET: UNIversal DETector for Quantum Light

Mirko Lobino – Trento

M. Lobino et al., **Integrated photonic platform for quantum information with continuous variables**, DOI: 10.1126/sciadv.aat9331

Figure 1 a) Schematic of a multiplexed photon number resolving detector integrated on a ridge GaAs waveguide, developed using a series connection of four pixel SNSPD and b) its equivalent electric circuit, which includes the amplifier input impedance R_L . c) Pulse height corresponding to the number of absorbed photons [25].

Figure 2 a) Schematic of the integrated PNR to develop in this project showing a series of N pixels composed by a NbN nanowire (80 nm width) and an AuPd on-chip parallel resistance (Rp=20 Ω value). b) Field intensity for the first TE mode propagating in the waveguide where the light absorption in each NbN nanowire element is at 3.4%. c) Schematic of the hybrid detector.

- Realization of an integrated detector for both single photon number resolving detection and homodyne mesurements.
- Base for the realization of a complete integrated structure for quantum computing.
- Several photon number integrated detectors are the basis for a fully integrated quantum computer.
- Homodying can be used for innovative techniques for the generation of quantum numbers.

Multidimensional nANodevice archItectures For IOw-perturbation singLe-ion Detection (MANIFOLD)

≽ Francesco Rossella - Pavia

nanotubes or nanowires

IONIZED SPUTTERING COATING (Ultra Low roughness, high penetration into the hole, 1-30 µm Ta, Mo,Cu) JONS

JJ as microwave single photon detector

- Fabrication of NbSe₂ JJ with controllable thickness (electrodes and insulating layer)
- NbSe₂ JJ electrical characterization at cryogenic temperature and in presence of strong magnetic field
- Test of NbSe₂ JJ as microwave single photon detector (operating in a 9 T Magnetic field)

Alessandro D'Elia - LNF

Magnetic field resilient microwave single photon detector based on van der Waals Josephson junctions

Axions as dark matter

Background

- Axions and the necessity for single microwave photon detector
 - Josephson junctions
 - Current limitations of JJ

Proposal

- vdW materials as platform for quantum technologies
- NbSe₂ junctions to overcome the limitations
- Timetable, team composition and budget required

Superconducting Quantum Devices & Experiments at FBK ->

Goal: Development of superconducting quantum circuits

- Josephson junctions (AI/AIOx/AI & other materials)
- Quantum-limited amplifiers (TWPAs, JPAs)
- Qubits (transmons)

Activities: Design, simulations, microfabrication, optimisation of cryogenic set-ups, cryogenic measurements, final experiments

Facilities:

- State-of-the-art microfabrication/packaging cleanrooms
- Analysis/characterisation tools (SEM/EDX/EDS, AFM, TOF-SIMS, XPS, ...)
- Cryogenic laboratory (*T*_b = 10 mK) under construction

Applications: Quantum sensing, cQED experiments, cryogenic detectors

Projects:

- DART WARS

OU- PILOT

Hv-QMS

FONDAZIONE Bruno kessler

Flexible and Organic Detectors

Beatrice Fraboni Bologna

INDIRECT DETECTING SINGLE PIXEL (NEPRO)

FULLY INTEGRATED FLEXIBLE DETECTING SYSTEM

Polysiloxane scintillators > Sara Carturan – LNL

----- PPO (excitation) PPO (emission)

----- LV (excitation)

LV (emission)

LR (excitation)

Polysiloxane scintillators peculiar features

Wavelength (nm)

- Transparency \geq
- Flexibility \succ

- Radiation hardness \succ
- Thermal resistance \geq

Intensity (a.u.)

250

S_{3X}

S_{2X}

S_{1X}

 S_{0x}

WV-

Plastic Scintillators PHantom vla additive maNufacturing tEchniques

ANEMONE

hAdroN bEam MONitoring by pErovskite based detectors

MAIN AIM:

Development of the first PEROVSKITE (Hybrid and Inorganic) film-based real-time direct detector for PROTONS and IONS, as beam monitor for hadron therapy and as beam test tool for high-energy experiments, realized on flexible substrate.

OBJECTIVES:

- i) Unravel the interaction of charged particles with nanostructured hybrid and inorganic perovskite films to design novel detectors.
- **ii) Design and optimization** of the most performing PVK-based active layer (hybrid and inorganic) and detector layout for hadron detection.
- iii) Test under relevant proton/ion irradiation and dosimetric characterization for beam monitoring application during hadrontherapy treatments.

Solution grown 2D perovskites on Kapton flexible substrate

 – flexiBlE hYbrid neutrON Detectors – Grant for young reasearchers funded by CSN5 – INFN

GOALS fabrication and characterization of flexible and large-area detectors for thermal and fast neutrons based on hybrid halide perovskites and organic polymers.

For the detection of thermal neutrons we will exploit the coupling with 3D microstructures of ¹⁰B, while the detection of fast neutrons will be based on the intinsically high density of H atoms.

ADVANTAGES

The main advantage offered by BEYOND is the possibility of deposit the semiconductor (polymer or perovskite) from solution by low-cost, low-tech and low-temperature deposition techniques easy-scalable onto large and flexible Place Pla

PVK thickness (µm)

Neutro

20

0

40

Ьğ

10⁷] n

SOLUTION CONCENTRTION

Detectors for Medical Applications

🕨 Massimiliano Fiorini – Ferrara

- Medipix4 international Collaboration based at CERN
 - 20 members, 2 ASICs
 - □ INFN joined in 2020
- Scientific goals: development of hybrid pixel detector ASICs
 - 2 ASICs for 4-side buttable large pixel detectors thanks to vertical integration (Through Silicon Via)
 - Spectroscopic X-ray imaging at rates compatible with medical CT scans (Medipix4)
 - Single-threshold particle tracking detector chip with improved energy and time resolution and data-driven architecture (Timepix4)

- Main interest of INFN groups:
 - Medical imaging, nuclear medicine, dosimetry, particles tracking
 - Visible photon detector (ERC-funded 4DPHOTON project) with excellent timing and position resolutions.

Measurement setup in Elettra Synchrotron (October 2023)

Medipix Collaboration Meeting in Ferrara (June 2022)

SYSTEM CHARACTERIZATION - PEPI Laboratory

PEPI laboratory is a new multimodal X-ray imaging setup integrating 2 cutting edge technologies: 1. A Chromatic High-Z detector (Pixirad-PixieIII) and 2. Phase contrast imaging through the propagation-based and edge-illumination techniques

PEPI is a project funded by the Young researchers grant programme – CSN5 – INFN

R&D on primary beam monitors and Prompt Gamma Timing for particle therapy (MERLINO&SIG)

INFN-To expertise: Detectors for Medical applications \rightarrow proton and ion therapy

SIG aims at exploiting thin silicon sensors and picoTDC technologies for single particle tracking up to clinical beam intensity (10⁸ part/cm²s) to

(1) overcome the low sensitivity of ionization chamber and allow fast scanning;

(2) provide trigger for range verification system based on **Prompt Gamma Timing (PGT).**

R&D on primary beam monitors for ion therapy (SIG project)

Optimized DAQ based on **CAEN picoTDC** for time measurement of single primary particle with ~ 1 ps bin

Sensors, ASIC and DAQ system designed and developed at INFN

MICROBE_IT: MICROdosimetry-based assessment of Biological Effectiveness in Ion Therapy goal

Field of research: particle therapy for cancer treatment

and Applications

TRENTO

Outcome: <u>GSM²</u> (Generalized Stochastic Microdosimetric Model) for predicting cell survival and RBE (relative biological effectiveness)

Goal: improve treatment planning effectiveness, and decrease normal tissue toxicity.

MICROBE_IT: MICROdosimetry-based assessment of

icr_®be_IT

Biological Effectiveness in Ion Therapy goal

Large Detectors

The ITS3 - a bent vertex detector

- Ready for LHC RUN 4 mounted during LS3
- Built using wafer-scale MAPS sensors, fabricated using stitching
- Thinned \leq 50 μ m, when Si is flexible
- Mechanically held in place thanks to carbon foam ribs
- **Bent** to the target radius (18 mm, **closer** to the Interaction Point thanks to the new beam-pipe at 16 mm)
- Better tracking efficiency, less power consumption
- ITS3 will replace 3 innermost ALICE Inner Tracking System 2 (ITS2) layers with only 6 sensors 26 cm long

Development of the ALICE Inner Tracking System 3 | Riccardo Ricci

INFN2024 - Sesto Incontro Nazionale di Fisica Nucleare

PANDORA: A New ECRIT – ECR Ion Trap for β-decay measurements in plasmas

The FOOT experiment: the electronic spectrometer

The FOOT experiment: the emulsion spectrometer

FramentatiOn Of Target

