

Hadron Physics 2030

Radiative corrections to ℓ -N scattering with MCMULE

Yannick Ulrich for the MCMULE team

University of Liverpool

30 October 2024

Yannick Ulrich, 30.10.24 - p.1/17

fixed-order NNLO QED framework Monte Carlo for MUons and other LEptons

- provided: matrix elements by us or others
- output: physical cross section for any physical observable
- MCMULE: phase space generation, subtraction, stabilisation, integration, event generation, etc.
- all leptonic $2 \rightarrow 2$ processes in QED at NNLO (+ a few others)
- stable public version is an integrator
- generator on development branch

Get the code here: https://mule-tools.gitlab.io Read the docs here: https://mcmule.readthedocs.io

MCMULE

processes in McMule

process	experiment	physics motivation	order
$e\mu \rightarrow e\mu$	MUonE	HVP to $(g-2)_{\mu}$	NNLO+
$\ell p o \ell p$	P2, Muse, Prad, QWeak,	proton radius and weak charge	NNLO
$eN \to eN$	PRad, ULQ2	background	NNLO-
$e^-e^- \to e^-e^-$	Prad 2	normalisation	NNLO
	MOLLER,	$\sin^2 heta_W$ at low Q^2	
$e^+e^- ightarrow e^+e^-$	any e^+e^- collider	luminosity measurement	NNLO
$ee \to \ell\ell$	VEPP, BES, Daphne,	<i>R</i> -ratio	NNLO+
	Belle	au properties	
$ee ightarrow \gamma\gamma$	Daphne	dark searches	NNLO-
	any e^+e^- collider	luminosity measurement	
$e\nu ightarrow e\nu$	DUNE	flux & $\sin^2 heta_W$	NNLO-
$\mu ightarrow u ar{ u} e$	MEG	ALP searches	NNLO+
	DUNE	beam-line profiling	
$\mu \rightarrow \nu \bar{\nu} e \gamma$	MEG, Mu3e, Pioneer	background	NLO
$\mu \rightarrow \nu \bar{\nu} eee$	MEG, Mu3e	background	NLO
$ee \to \pi\pi$	VEPP, BES, Daphne,	<i>R</i> -ratio	NLO+
$ee ightarrow \ell \ell \gamma$	VEPP, BES, Daphne,	<i>R</i> -ratio	NLO+

Yannick Ulrich, 30.10.24 - p.3/17

processes in McMule

process	experiment	physics motivation	order
$e\mu \rightarrow e\mu$	MUonE	HVP to $(g-2)_{\mu}$	NNLO+
$\ell p o \ell p$	P2, Muse, Prad. QWeak	proton radius and weak charge	NNLO
$eN \to eN$	PRad, ULQ2		NNLO-
$e^-e^- \to e^-e^-$	Prad 2	on	NNLO
	MOLLER, 👝 🤇	low Q^2	
$e^+e^- ightarrow e^+e^-$	any e^+e^- col \bigcirc	measurement	NNLO
$ee \to \ell\ell$	VEPP, BES, 📜 🌔		NNLO+
	Belle	5	
$ee ightarrow \gamma\gamma$	Daphne	es	NNLO-
	any e^+e^- col	measurement	
$e\nu ightarrow e\nu$	DUNE DUNE	\sim θ_W	NNLO-
$\mu ightarrow u ar{ u} e$	MEG real world domination		NNLO+
	DUNE goal. World domination filing		
$\mu ightarrow u ar{ u} e \gamma$	MEG, Mu3e, Pioneer	background	NLO
$\mu \rightarrow \nu \bar{\nu} e e e$	MEG, Mu3e	background	NLO
$ee \to \pi\pi$	VEPP, BES, Daphne,	<i>R</i> -ratio	NLO+
$ee \to \ell\ell\gamma$	VEPP, BES, Daphne,	<i>R</i> -ratio	NLO+
		Vennield	Il. ab 20 10 24 - 2/17

Yannick Ulrich, 30.10.24 - p.3/17

theory background

Yannick Ulrich, 30.10.24 - p.4/17

challenges to overcome

- divergent phase space integration
- ⇒ FKS^ℓ
 - numerical instabilities
- \rightarrow next-to-soft stabilisation
 - virtual amplitudes with $m \neq 0$
- ⇒ OpenLoops (one-loop) massification (two-loop)

subtract universal counter term from divergent real correction

- works to all order in QED [Engel, Signer, YU 19]
- no resolution parameter ω_c
- unphysical & arbitrary $0 < \xi_c \lesssim 1$
- singularities are treated locally \rightarrow stable numerical integration

real-virtual corrections trivial in principle, delicate in practise

- based on LBK theorem [Low 58; Burnett, Kroll 67] and extensions [Engel, Signer, YU 21; Engel 23; Engel 24]
- if $E_{\gamma} < E_{\rm NTS} \approx 10^{-3} \sqrt{s}/2$, switch to NTS expansion rather than full expression
- introduces small theory error $\mathcal{O}(10^{-3}) \times \sigma^{(2)} = \mathcal{O}(10^{-6})$ \Rightarrow well below the N³LO
- significant speed-up: 7 days vs. 3 months

two-loop integrals with masses are really difficult

- but $m_\ell^2 \ll m_p^2 \sim s \sim Q^2$
- expand in m_ℓ^2/Q^2

UNIVERSITY OF LIVERPOOL

$$\underbrace{\sum_{\ell=1}^{p^{\mathcal{M}_{\mathbf{z}}}} \sim A\log^2 \frac{m_{\ell}^2}{Q^2} + B\log \frac{m_{\ell}^2}{Q^2} + C + \mathcal{O}\left(\frac{m_{\ell}^2}{Q^2}\right)$$

- can be done easily by using $m_\ell = 0$ result up to three-loop [Penin 06; Becher, Melnikov 07; Engel, Gnendiger, Signer, YU 18; YU 23]
- introduces small theory error $\mathcal{O}(10^{-2}) \times \sigma^{(2)} = \mathcal{O}(10^{-5})$ \Rightarrow well below statistical error

results for PRad

Yannick Ulrich, 30.10.24 - p.9/17

 $E_{\rm beam} = 1.1 \, {\rm GeV}$

e-p:

- $0.7^{\circ} < \theta_e < 6.0^{\circ}$
- no more than $20 \, MeV$ photons outside a $12 \, mrad$ cone around the electron

e-e:

- $0.5^\circ < \theta_e < 6.5^\circ$
- $$\begin{split} \sum E_{\gamma} < 131.95 \, \mathrm{MeV}, \\ \left| 180^{\circ} \left| \phi_n \phi_w \right| \right| < 7.35^{\circ} \end{split}$$

not to scale

• simple dipole model for proton form factor $G_E = \frac{G_M}{1+\kappa} = \left(1+\frac{Q^2}{\Lambda^2}\right)^{-2}$

$$\sigma \supset \underbrace{\underbrace{}}_{\Delta} + \underbrace{\underbrace{}}_{\Delta} +$$

Yannick Ulrich, 30.10.24 - p.12/17

Yannick Ulrich, 30.10.24 - p.12/17

Yannick Ulrich, 30.10.24 - p.12/17

 e^-p @ PRad [1.1 GeV]

Yannick Ulrich, 30.10.24 - p.13/17

• by using e^+ and e^- beams you can make the red or blue stuff go away

- $\sigma_{e^+} + \sigma_{e^-} \rightarrow \;$ some of the theoretically difficult stuff cancels
- $\sigma_{e^+} \sigma_{e^-} \rightarrow \;$ radiative corrections are reduced

• by using e^+ and e^- beams you can make the red or blue stuff go away

- $\sigma_{e^+} + \sigma_{e^-}
 ightarrow$ some of the theoretically difficult stuff cancels
- $\sigma_{e^+} \sigma_{e^-}
 ightarrow \,$ radiative corrections are reduced
- there may be hope for this

Yannick Ulrich, 30.10.24 - p.14/17

point-like calculations

UNIVERSITY OF LIVERPOOL

- approximate NNLO for $ep \rightarrow ep\gamma$ from $pp \rightarrow 2j + \gamma$ [Badger, Czakon, Hartanto, Moodie, Peraro, Poncelet, Zoia 23]
- full mass dependence plausible but very difficult

form-factor calculations

- partial N^3LO for ep
 ightarrow ep (and who knows, maybe ee
 ightarrow ee)
- various performance & usability improvements
- arbitrary spin nucleus (is there any use case?) using [Lorcé 09]

better hadronic models

- TPE: more flexible & better models, maybe extension to some other nuclei
- leptonic QED for inelastic: is there interest?

general

- merging the generator
- resummation of soft photon emission
- EW & polarisation effects for $ee \rightarrow ee$, $ep \rightarrow ep$, ...

MCMULE mule-tools.gitlab.io

f.I.t.r.: S.Kollatzsch (Zurich & PSI), A.Signer (Zurich & PSI), V.Sharkovska (Zurich & PSI), S.Gündogdu (Zurich & PSI), D. Moreno (PSI), A.Coutinho (IFIC), Y.Ulrich (Liverpool), D. Radic (Zurich & PSI), L.Naterop (Zurich & PSI), M.Rocco (Turin) not shown: F.Hagelstein (Mainz), N.Schalch (Oxford), T.Engel (Freiburg), A.Gurgone (Pavia), P.Banerjee (Cosenza)

Yannick Ulrich, 30.10.24 - p.17/17

 e^-p @ PRad [1.1 GeV]

Yannick Ulrich, 30.10.24 - p.18/17

Yannick Ulrich, 30.10.24 - p.19/17