

CEPC positron source design and related research activities in IHEP

Xiaoping Li, Cai Meng, Dazhang Li, Jindong Liu, Jie Gao, Wei Lu

中國科学院為能物記為完備 Institute of High Energy Physics Chinese Academy of Sciences

环形正负电子对撞机 Circular Electron Positron Collider

Summary

Parameters and layout of the CEPC Linac

Positron source for CEPC

- Electron beam for positron production
- Positron generation and Pre-acceleration
- R&D of key components for positron source

Other related research activities

- CEPC plasma injector introduction
- A PWFA-TF Based on BEPCII
- Polarized positron beam generation

Content

Parameters and layout of the CEPC Linac

Positron source for CEPC

- Electron beam for positron production
- Positron generation and Pre-acceleration
- R&D of key components for positron source

Other related research activities

- CEPC plasma injector introduction
- A PWFA-TF Based on BEPCII
- Polarized positron beam generation

Baseline design of the CEPC Linac

- A **30GeV** room temperature Linac
- A combination of S-Band (2860MHz) and C-Band (5720MHz)
- The Linac tunnel length is **1.8km**

Parameter	Symbol	Unit	Baseline
Energy	E_{e}/E_{e+}	GeV	30
Repetition rate	f_{rep}	Hz	100
Bunch number per pulse			1 or 2
Bunch charge		nC	1.5 (3)
Energy spread	$\sigma_{_E}$		1.5×10 ⁻³
Emittance	\mathcal{E}_r	nm	6.5

Parameters and layout of the CEPC Linac

Layout of the CEPC Linac

- FAS+PSPAS+SAS: S-Band
- **TAS:** C-Band (Higher gradient \rightarrow Shorter linac tunnel length)

Parameters and layout of the CEPC Linac

Positron source for CEPC

- Electron beam for positron production
- Positron generation and Pre-acceleration
- R&D of key components for positron source

Other related research activities

- CEPC plasma injector introduction
- A PWFA-TF Based on BEPCII
- Polarized positron beam generation

Electron beam for positron production

Electron source and bunching system (Baseline)

– Electron Gun

- A traditional thermionic triode gun
- 3nC for electron injection
- 11nC for positron generation

- Bunching

- Two SHBs (158.89MHz/476.67MHz)
- Buncher(2860MHz)
- Accelerating structure (2860MHz)
- Energy: 50MeV
- Normalized Rms Emittance: 80mm-mrad
- Transmission
 - 90%

- Verified at BEPCII and HEPS Linac

Positron source for CEPC

Electron beam for positron production

■ Acceleration: 50MeV→4GeV

- 18+3(redundancy) S-band klystron
- 1 klystron \rightarrow 4 accelerating structures
- Gradient: 22MV/m

Simulation results

- Energy: 4GeV
- Bunch charge: 10nC
- Energy spread: 0.63%

10nC@4GeV electron beam for positron production

AHIPS-2024, October 16-18, Orsay, France

Parameters and layout of the CEPC Linac

Positron source for CEPC

- Electron beam for positron production
- Positron generation and Pre-acceleration
- R&D of key components for positron source

Other related research activities

- CEPC plasma injector introduction
- A PWFA-TF Based on BEPCII
- Polarized positron beam generation

Positron source for CEPC

Positron source and Pre-accelerationg

Positron source Target (Conventional) Electron beam: 10nC@4GeV

- Electron beam: Tunc@4
 Tungatan@15 mm
- Tungsten@15 mm
- Beam size: 0.5 mm

AMD (Adiabatic Matching Device)

- A flux concentrator
- Magnetic field: $(5.5T \rightarrow 0T) + 0.5T$ Solenoid

Capture & Pre-accelerating structure

- 1 klystron \rightarrow 2 accelerating structures
 - Larger aperture S-band accelerating structure with aperture is 25 mm, gradient is 22 MV/m and length is 2 m

4 GeV Electron

Chicane @ 200MeV

- Wasted electron separation
- Exit: ~5.5nC, Nor. Emittance: 2370mm-mrad

Positron source for CEPC

Positron source and Pre-accelerationg

Acceleration: 200MeV→1.1GeV

- 8+1(redundancy) S-band klystron
- 1 klystron \rightarrow 2 accelerating structures
 - 10 Larger aperture S-band accelerating structure@22MV/m
 - 8 normal S-band accelerating structure@27MV/m

Transverse focusing

 Triplet quadrupoles are outside of each accelerating structure

Simulation results

- Energy: 1.1GeV
- Energy spread: 0.4%
- Bunch charge: ~4.5nC
- Normalized rms Emittance: 2500mm-mrad

12

Parameters and layout of the CEPC Linac

Positron source for CEPC

- Electron beam for positron production
- Positron generation and Pre-acceleration
- R&D of key components for positron source
- Other related research activities
 - CEPC plasma injector introduction
 - A PWFA-TF Based on BEPCII
 - Polarized positron beam generation

R&D of key components for positron source

A flux concentrator prototype has been successfully developed

- Manufactured under a cooperation MOU with KEK
- A trumpet-shaped copper coils: 12 turns
- The inner diameters: 7 to 52 mm
- Coils distance: 0.2 mm
- Total length: 100 mm
- Peak current: 15A
- Max pulse magnetic field: >6T@15kA

R&D of key components for positron source

A new pulse modulator has been developed for FC

- All-solid-state switching components IGCT instead of hydrogen thyratron (BEPC II)
- Obtained a higher peak current without high-frequency ripples
- Will be used for BEPCII operation this September

R&D of key components for positron source

Test results of the FC

- A test bench has been built up for performance verification of the FC
- The test results of FC agreed well with the designed parameters
- A peak magnetic field of 6.2 T had been obtained inside the FC at a 15kA driving current
- Can meet the requirements of CEPC positron source baseline design

Parameters and layout of the CEPC Linac

Positron source for CEPC

- Electron beam for positron production
- Positron generation and Pre-acceleration
- R&D of key components for positron source

Other related research activities

- CEPC plasma injector introduction
- A PWFA-TF Based on BEPCI
- Polarized positron beam generation

CEPC plasma injector introduction

CEP

CEPC plasma injector

- IHEP proposed a CEPC plasma injector scheme as an alternative solution for Linac from 2017

- New idea: plasma accelerator in combination with traditional accelerators
- Cost saving to double/triple the energy in one 10-meter-scale plasma
- Conceptual design based on simulation shows that the scheme is feasible
- Experimental proof and prototyping is required, especially for positron acceleration

18

- Parameters and layout of the CEPC Linac
- Positron source for CEPC
 - Electron beam for positron production
 - Positron generation and Pre-acceleration
 - R&D of key components for positron source

Other related research activities

- CEPC plasma injector introduction
- A PWFA-TF Based on BEPCII
- Polarized positron beam generation

A PWFA-TF Based on BEPCII

A PWFA-TF Based on BEPCII

- A new project had been supported by CAS from 2023 October

- Based on BEPCII: The only in-operation facility can provide highenergy positron beam in China currently
- For positron acceleration and cascaded acceleration based on PWFA
- Development of technologies: high charge electron gun and double bunches generation, high power lasers, high rep. plasmas
- CHIEF SCIENTIST: Prof. Wei Lu, and first-stage budget ~15M \$

AHIPS-2024, October 16-18, Orsay, France

A PWFA-TF Based on BEPCII

反射镜腔法兰预留0.15 m 挡块2预留位置为IP上游10.5 m至9.5 m

📄 PR 🔳 BPM 🕴 Corrector 🚾 Dipole 🚪 Quadrupole ┥ BAM 👗 COLV 🛛 💢 COLH 📝 LEN ICT

Parameters	Unit	BL-I e- (AM3)	BL-I e- (IP1)	BL-I e+ (AM3)	BL-I e+ (IP1)	BL-I e- (IP1, block)	BL-I e+ (IP1, block)	BL-II e- (IP2)	BL-II e- (IP1)
Energy	GeV	2	2	2	2	2	2	0.15	0.15
Charge	рС	2000	2000	100	100	9.4	0.2	5000	1000
bunch length	ps	10	1	10	1	~1	~1	0.7	1
Geo. emittance	mm∙mrad	0.1/0.1	0.1/0.1	0.4/0.4	0.4/0.4	0.011/0.005	0.04/0.02		
RMS beam size	μm	-	150/150	-	300/300	30/40	54/76	35/22	100/50

AHIPS-2024, October 16-18, Orsay, France

BL1C02

CEPC positron source design and related research activities in IHEP

A PWFA-TF Based on BEPCII

21

AHIPS-2024, October 16-18, Orsay, France

Parameters and layout of the CEPC Linac

Positron source for CEPC

- Electron beam for positron production
- Positron generation and Pre-acceleration
- R&D of key components for positron source

Other related research activities

- CEPC plasma injector introduction
- A PWFA-TF Based on BEPCI
- Polarized positron beam generation

Other related research activities

Polarized positron beam generation

- Preliminary consideration on a Compton Ring and a Stacking Ring for the generation of polarized e+ beams~1×10¹²e+/second
 - A potential solution to generate polarized positrons in CEPC
 - Up to now, just a conceptual consideration (requires a lot of further simulation works in future)
- Using the self-polarization to generate polarized e+ beams in DR
 - Need a higher energy in DR around 2GeV and a strong dipole strength
 - Current research shows that extracted beam polarization @ 10min ~ 44%

Content

Parameters and layout of the CEPC Linac

Positron source for CEPC

- Electron beam for positron production
- Positron generation and Pre-acceleration
- R&D of key components for positron source

Other related research activities

- CEPC plasma injector introduction
- A PWFA-TF Based on BEPCII
- Polarized positron beam generation

- The CEPC Linac is a 30 GeV room temperature S-band and C-Band combined linear accelerator working at 100Hz.
- Positron source for CEPC adopting a conventional scheme.
- A flux concentrator prototype and its pulse modulator has been developed and tested.
- A PWFA-TF Based on BEPCII had been supported from 2023 Oct.
- All accelerator devices will be installed by 2025 Jun.

中國科學院為能物招酬完備 Institute of High Energy Physics Chinese Academy of Sciences

Thank you for your attention!

AHIPS-2024, October 16-18, Orsay, France

Parameters Case-1		Parameters		Case-2			D		Case-3				
		Req.	Design	W. error			Req.	Design	W. error	Parameters		Req.	Design
Energy	MeV	150	>150	>150	Energy	MeV	150	>150	>150	Energy	MeV	≥170	172.7
Bunch charge	nC	5	5	5	Bunch charge	nC	1	1	1	Bunch charge	nC	≥0.03	0.042
Bunch length	ps	≤1 (driver)	0.93	≤1	Bunch length	ps	≤1	0.5	0.51 ± 0.1	Bunch length	ps	≤1	0.36
Beam size μm			39(H)	$43 \pm 1.8(\sigma)$	Ream size	um	≤100@IP1	27(H)	$38.5 \pm 8.3(\sigma)$	Beam size		≤100@IP1	75/73
	μm	≤70@IP2	21(V)	$32 \pm 1.6(\sigma)$	Deam Size	μΠ		33(V)	$36.8 \pm 5.4(\sigma)$		μΠ		
	1.4		31(V)	$32 \pm 1.0(0)$	Peak current	kA	≥1.5	2.0		Peak current	kA	/	0.05
Peak current	kA	≥ 1.8 (driver)	2.6		Length	m	28		27.7		-		

CEPC as a Higgs (ttbar, H, W, Z) Factory

- Linac, 30GeV, 1.8km
- Full energy Booster, 100km
- Collider, 100 km
- Transport lines
- Linac design
 - Meet requirements
 - High availability
 - Reserve upgrade potential

$$L_{\rm int} = \int_0^T L(t) dt = \langle L \rangle \cdot T_s \cdot \eta$$

The maximum energy of booster is 180GeV and circumference is 100 km

- Large circumference & Low injection energy → Low magnetic field
 - design difficulty in magnet (*field*) and power supply (*stability*)
- Large extraction energy \rightarrow Large field range
 - design difficulty in magnet (*excitation efficiency*) and power supply (*power*)
- Increasing the energy of the Linac is the easiest way: 30 GeV

Wen Kang Session M2-2: #1		Magnat	Low ir	jection	energy	Max. Extraction energy	Cest
		wagnet	10GeV	20GeV	30GeV	180GeV	COSL
	Air-core coil	Yes	Yes	Yes	No	Very high	
iron-corn	oriented silicon steel sheet		No	Yes	Yes	Yes	high
magnet	Non-oriented silicon steel sheet		No	No	Yes	Yes	low

effect of residual magnetism

Simulation results (including Wakefield & CSR)

