An optical matching device for the undulator-based ILC positron source

Development status of a pulsed solenoid (and a plasma lens)

C. Tenholt, M. Formela, M. Fukuda, N. Hamann, <u>G. Loisch</u>, M. Mentink, G. Moortgat-Pick, T. Okugi, P. Sievers, G. Yakopov, K. Yokoya

AHIPS Workshop, 17.10.2024

Universität Hamburg

HELMHOLTZ

ILC undulator-based positron source

Introduction to layout and technical challenges

- Fast rotating target wheel
- 1ms-positron pulse duration
- OMD for positron capturing
 - Flux concentrator
 - Focus variation during long pulses
 - Quarter-wave transformer
 - Limited yield

DESY.

Principal Layout: Ti-Wheel with a Diameter of 1.0 m, rotating at 100 m/s, 2000 rpm.

- "New" approach: Pulsed solenoid
 - Stable and reproducible focus
 - High magnetic flux density
 - Compatible with long pulse duration
 - Manageable heat load in solenoid
 - Manageable heat load on target (!?)

Pulsed solenoid for positron focusing

Background and previous work

- Pulsed solenoid was e.g. used at LEP
- Constant, small coil winding cross-section for uniform current density
- Pulsed to reduce power/thermal load
- Potentially higher yield (!?)
- Prel. parameters:
 - ~50 kA peak current
 - 4 ms half-sine pulse + 1ms flat-top
 - ▶ 7 turns, linear taper (20mm \rightarrow 80mm)
 - Peak field ~5 T
 - Average heat load on target: 73 W + 711 W
 - Peak force on wheel 612 N

DESY.

КЕК

Concentration of field in solenoid

Magnetic flux density [T] without shield

DESY.

Shielding of field from target wheel

Pulsed solenoid (and plasma lens) for ILC undulator-positron source | AHIPS 2024 |

Heating of titanium wheel

Without shielding

DESY.

With shielding

- ▶ Reduction of induced heat 73W + 711W \rightarrow 31W + 298W
- ▶ Reduction of peak force on target 612N \rightarrow 263N
- Mag. flux "wings" due to finite width of collar shield
- Slight field drag (by target movement)
- ightarrow Further optimisation along with mechanical design

Magnetic flux density B(z) on titanium shield [T]

Summary

DESY.

- 2D & 3D simulation in Comsol
- Movement of titanium plate included (100m/s)
- Peak solenoid current: 46886 A
- Combined shield geometry model: coild shield w/ min. distance to shielding (~1mm) + collar shield
- ightarrow reduction of force & heat load on target
- ► → Increase of peak $B(z) \sim 10\%$

Magnetic field stability

Variation of magnetic field during flat-top current

- Transient current distribution subject to skin-effect
- > Skin depth @125 Hz ~6 mm \rightarrow current distribution should be stable
- < 1% deviation of field simulated</p>

DESY.

КЕК

Yield simulations: summary

Brief overview of simulations target \rightarrow damping ring

- Yield of undulator-based positron source w/ solenoid matching device simulated
- Significant yield improvement to QWT
- ▶ Possible trade-off: target heatload \leftrightarrow yield
- Further optimisation maybe possible

	Beamloss Power				Positron Yield	
	@dogleg	@booster	@EC	@DR	@capture (Z <7mm)	@DR
QWT	0.677 kW	0.014 kW	4.01 kW - 5.56 kW	13.15 kW - 14.3 kW	1.07	~1.1
Pulse solenoid w/o shield	0.927 kW	0.055 kW	5.86 kW - 7.93 kW	17.39 kW - 16.01 kW	1.81	1.91
Pulse solenoid with shield	0.871 kW	0.064 kW	5.58 kW - 7.90 kW	17.73 kW - 16.24 kW	1.64	1.74

Coil stress

Dynamic deformation w/o support & heat load

- Max. peak von-Mises stress ~146 Mpa
 - Soft Cu tensile strength ~200MPa
- Average power dissipation in Cu coil: ~11.5 kW

Prototype manufacturing

Mechanical design of main in-vacuum components

Solenoid coil

DESY.

- ► 7 canted, tapered windings
- Conductor cooled from inside
- Mechanical stability through supporting "rim"
- Ceramic enclosure to support and insulate coil
- Magnetic shielding at solenoid entrance aperture
 - Outer shielding currently sacrificed for less complexity
 - Main shielding to target unaffected

Prototype manufacturing

Mechanical design of main in-vacuum components

- Simulation of prototype to be done
- ▶ 2nd prototype foreseen
 - Optimised geometry for field homogeneity
 - Materials and mechanical stability optimisation with 1st prototype
- 3D-printing of coil (and possibly ceramic)
- Alumina ceramic, SiN if higher stability required

(Active) Plasma lens as optical matching device

Ongoing development of tapered, large aperture, active plasma lens

- Active plasma lens allows strong focusing forces
- In simulations superior to QWT
- Several requirements not yet investigated
 - MHz repetition rate
 - Millisecond macro pulse length
 - Operation close to cavity (gas load..)
 - ► Strong taper (d \approx L)

- Scaled-down prototype built
- Transverse plasma instabilities & electrode erosion observed
 - \rightarrow Fundamental questions now being addressed

Summary & Outlook

DESY.

Status and next steps for solenoid and plasma lens

- No show stoppers for solenoid found so far
- Simulations now concentrating on design details
 - Magnetic field homogeneity
 - Distribution of mechanical forces
- Prototype mech. design finished, manufacturing starting
- Magnetic field diagnostics being set up
 - Field homogeneity
 - Field stability (skin effect..)
- Fundamental questions of plasma lens being addressed
 - Discharge stability
 - Repetition rate/pulse length limits

| Pulsed solenoid (and plasma lens) for ILC undulator-positron source | AHIPS 2024 |

Thank you for your attention!

Contact

Carmen Tenholt (carmen.tenholt@desy.de), Niclas Hamann, Gregor Loisch DESY, Hamburg Masafumi Fukuda, Toshiyuki Okugi, Kaoru Yokoya KEK, Tsukuba Gudrid Moortgat-Pick University Hamburg