

INSTITUT POLYTECHNIQUE **DE PARIS**

Positron acceleration in plasma wakefields

PHYSICAL REVIEW ACCELERATORS AND BEAMS 27, 034801 (2024)

Review Article

Positron acceleration in plasma wakefields

Gevy J. Cao[®], Carl A. Lindstrøm[®], and Erik Adli[®] Department of Physics, University of Oslo, 0316 Oslo, Norway

Sébastien Corde LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France

Spencer Gessner SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

Sébastien Corde Professor at Ecole Polytechnique Visiting Scientist at SLAC

Numerical simulations were perfo med using HPC resources from GENCI-TGCC (Grant No. 2020-A0080510786 and No. 2020-A009 510062) and using the open source quasistatic PIC code QuickPIC.

00

- Basics of plasma accelerator physics
- Scientific context for positron acceleration
- - \succ Efficiency
 - Evolution of transverse emittance \succ
 - \succ Uncorrelated energy spread
 - \succ Energy efficiency vs beam quality tradeoff
- The positron problem
 - > Luminosity-per-power
 - Electron motion \succ
 - Strategies \succ

• Preliminary considerations with positron-loaded quasilinear plasma wakefields

Basics of plasma accelerator physics

- Motivations, the obvious:
 - Plasma accelerator: already ionized medium, no breakdown limit for the field
 - Plasma photocathode: opportunities to generate brighter beams
- Two key physics area in plasma-based accelerators:
 - Exciting plasma wakefields with particle beams and laser pulses (plasma time scale)
 - Driver and particle beam evolution in plasma (driver and beam time scale) ►

At the heart of plasma accelerators, the plasma oscillation:

Using a cold fluid description for plasma electrons and immobile ions:

continuity $\frac{\partial n_p}{\partial t} + \nabla \cdot (n_p \overrightarrow{v_p}) = 0$ eq. of motion $\left(\frac{\partial}{\partial t} + \overrightarrow{v_p} \cdot \nabla\right) \overrightarrow{p_p} = -e(\overrightarrow{E} + \overrightarrow{v_p} \times \overrightarrow{B})$ $\nabla \cdot \overrightarrow{E} = \frac{\rho}{\epsilon_0}, \quad \text{etc}.$ Maxwell

a displaced plasma slice is an harmonic oscillator:

$$d_t^2 \xi = -\omega_p^2 \xi$$

with a characteristic frequency ω_p called the plasma frequency:

$$\omega_p = \frac{n_0 e^2}{m_e \epsilon_0}$$

linearize

 $n_p = n_0 + n_1$, etc.

$$\frac{\partial n_1}{\partial t} + n_0 \nabla \cdot (\overrightarrow{v_1}) = 0$$

 $\nabla \cdot \overrightarrow{E}_1 = -e \frac{n_1}{\epsilon_0} + q \frac{n_b}{\epsilon_0}$, etc.

external particle beam

At the heart of plasma accelerators, the plasma oscillation:

Using a cold fluid description for plasma electrons and immobile ions:

continuity
$$\frac{\partial n_1}{\partial t} + n_0 \nabla \cdot (\overrightarrow{v_1}) = 0$$

eq. of motion
$$m_e \frac{\partial \overrightarrow{v_1}}{\partial t} = -e \overrightarrow{E}_1$$

Maxwell $\nabla \cdot \overrightarrow{E}_1 = -e \frac{n_1}{\epsilon_0} + q \frac{n_b}{\epsilon_0}, \text{ etc.}$

a displaced plasma slice is an harmonic oscillator:

$$d_t^2 \xi = -\omega_p^2 \xi$$

with a characteristic frequency ω_p called the plasma frequency:

$$\omega_p = \frac{n_0 e^2}{m_e \epsilon_0}$$

$$\left(\frac{\partial}{\partial t^2} + \omega_p^2\right)n_1 = \omega_p^2 \frac{q}{e}n_1$$

If laser, ponderomotive term:

VOLUME 54, NUMBER 7

PHYSICAL REVIEW LETTERS

18 FEBRUARY 1985

Acceleration of Electrons by the Interaction of a Bunched Electron Beam with a Plasma

Pisin Chen^(a)

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

and

J. M. Dawson, Robert W. Huff, and T. Katsouleas Department of Physics, University of California, Los Angeles, California 90024 (Received 20 December 1984)

A new scheme for accelerating electrons, employing a bunched relativistic electron beam in a cold plasma, is analyzed. We show that energy gradients can exceed 1 GeV/m and that the driven electrons can be accelerated from $\gamma_0 mc^2$ to $3\gamma_0 mc^2$ before the driving beam slows down enough to degrade the plasma wave. If the driving electrons are removed before they cause the collapse of the plasma wave, energies up to $4\gamma_0^6 mc^2$ are possible. A noncollinear injection scheme is suggested in order that the driving electrons can be removed.

PACS numbers: 52.75.Di, 29.15.-n

So-called "beam-driven plasma accelerators" Or Plasma WakeField Accelerator (PWFA)

T. Tajima and J. M. Dawson Department of Physics, University of California, Los Angeles, California 90024 (Received 9 March 1979)

An intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force. Electrons trapped in the wake can be accelerated to high energy. Existing glass lasers of power density 10^{18} W/cm² shone on plasmas of densities 10¹⁸ cm⁻³ can yield gigaelectronvolts of electron energy per centimeter of acceleration distance. This acceleration mechanism is demonstrated through computer simulation. Applications to accelerators and pulsers are examined.

So-called "laser-driven plasma accelerators" Or Laser WakeField Accelerator (LWFA)

Plasma-based accelerators: linear wakefield

to the drive beam center.

behind the driver:

each other

$$-B=0$$

- Acceleration and focusing: a quarter of the plasma wave

plasma skin depth $1/k_p$

- $B_{\theta} \neq 0$ due to beam current and plasma radial and longitudinal currents - Long beam: $n_1 \simeq \frac{q}{-} n_b$ to shield E_r , return current to shield B_θ
- Short beam: there is an instantaneous inductive shielding driven by the fast variation of the plasma radial current

- $\xi = z ct$ is the co-moving coordinate, longitudinal position with respect
- Common to laser-driven and beam-driven linear wakefields, we have
- E_r and E_z are sinusoidal functions of ξ that are 90° out of phase with

- Inside the beam (different from laser-driven case):
- E_r and B_{θ} are shielded by the plasma, and decays radially over a

Electron or laser-driven nonlinear 3D wakes

- plasma electrons are expelled/blown out of the propagation axis, thus forming an idn cavity
- nonlinear plasma oscillation
- electron sheaths
- electron self-injection and controlled injection possible for LWFA

Positron-driven nonlinear 3D wakes:

- Plasma electrons are sucked in towards the propagation axis

- If bunch is short, plasma electrons overshoot and set up a nonlinear plasma oscillation with similar ion cavities as in the blowout regime

- Otherwise, more complicated

Plasma-based accelerators: nonlinear wakefield

Scientific context for positron acceleration

<u>Key properties of the blowout regime:</u>

<u>Clayton et al., Nat Comm 7, 12483 (2016)</u>

EM fields inside cavity:

$$\frac{1}{4}k_p r \mathbf{e}_{\theta}$$
$$\frac{1}{4}k_p r \mathbf{e}_{\theta}$$

experienced by an e-:

$$E_r - cB_\theta) = -\frac{eE_0k_p}{2}r$$

Focusing force linear in r

Additional properties:

$$= 0 \qquad \partial_r F_z = 0$$

The blowout regime has ideal field properties for e-:

emittance preservation is expected to be achievable.

beam loading allow for high

 \longrightarrow efficiency, flat E_z field and therefore low energy spread.

most studied regime for

electron acceleration, in both LWFA and PWFA.

But:

hosing instability may be an

- important limitation for collider beam parameters.
- ion motion may lead to emittance growth.

what abut e+?

11

The blowout regime has ideal field properties for e-: emittance preservation is expected to be achievable. beam loading allow for high efficiency, flat E_z field and therefore low energy spread. most studied regime for electron acceleration, in both LWFA and PWFA. But: hosing instability may be an

- important limitation for collider beam parameters.
- ion motion may lead to emittance growth.

what abut e+?

Accelerating positrons in plasma?

Nonlinear plasma wakefields: NOT symmetrical for e-/e+. Blowout properties for e- not achievable for e⁺.

- mobile plasma electrons
- mostly immobile plasma ions

Wealth of advanced regimes varying beam and plasma geometries

 common ingredient: mobile plasma electrons flowing through the e⁺ bunch

Linear plasma wakefields: symmetrical for e-/e+. Directly applicable to linear colliders?

 $m_i \gg m_o$

physics beyond idealised blowout

13

What is the positron problem today?

(accelerating&focusing)?

motion with a much smaller mass

Unloaded plasma wakefield suitable for e⁺ acceleration

- Loaded plasma wakefield with efficiency, beam quality, and ultimately competitive luminosity-per-power for e+ arm?
- With loading comes plasma electron motion, basically ion

Preliminary considerations with e+ loaded quasilinear plasma wakefields

Energy efficiency from plasma to accelerated trailing bunch

$$\eta_{p \to t} = \frac{W_{\text{gain}}}{W_{\text{loss}}} = \left| \frac{N_t \langle E_z \rangle_t}{N_d \langle E_z \rangle_d} \right|$$

short bunches, linear and 1D

Linear 3D case:

<u>Hue et al., PRR 3, 043063 (2021)</u>

 $\eta_{p \to t, 1D \text{ linear}}$

Evolution of transverse emittance

Quasi-matching/transverse equilibrium:

 $F_{x} \simeq -gx$ with g the gradient of the focusing force,

Enveloppe equation:

$$\frac{d^2\sigma_x}{dz^2} = -k_\beta^2\sigma_x + \frac{\varepsilon^2}{\sigma_x^3} \qquad \text{with} \quad k_\beta = \sqrt{g/\gamma m_e c^2}$$

$$\implies \beta_{\text{matched}} = 1/k_{\beta}$$

- (a): quasi-matching is extremely important to minimize emittance growth at acceptable levels. Demonstrate that near transverse equilibrium is possible with Gaussian positron beams.
- (b): this is still valid for $n_b/n_0 \gg 1$, that is for a nonlinear positron load in a linearly-driven plasma wakefield.
- (c): for $\Delta \phi_e \sim k_b \sigma_z > 1$, the situation qualitatively cha ideas are needed to mitigate emittance growth k_b

electron motion

anges, and new

$$= \frac{1}{c} \sqrt{\frac{n_b e^2}{m_e \epsilon_0}} = \sqrt{\frac{n_b}{n_0}} k_p$$

$\sigma_{ m tr}~(\mu{ m m})$	$\varepsilon_n (\mu \mathrm{m})$	β (cm)	$\sigma_{tz} (\mu \mathrm{m})$	n_b/n_0	$k_b \sigma_{tz}$	E (GeV)	η (%
0.7	0.5	0.20	2.14	1	0.09	1	0.30
0.8	0.5	0.26	2.14	1	0.09	1	0.39
1.0	0.5	0.40	2.14	1	0.09	1	0.6
1.6	0.5	1.02	2.14	1	0.09	1	1.55
1.01	0.5	0.41	2.14	0.25	0.045	1	0.10
1.00	0.5	0.40	2.14	2.5	0.14	1	1.52
0.80	0.5	0.26	2.14	25	0.45	1	9.1
0.327	0.5	4.28	2.14	1	0.09	100	0.0
0.288	0.5	3.33	2.14	25	0.45	100	1.63
0.189	0.5	1.43	2.14	250	1.4	100	5.24
	$\sigma_{\rm tr} \ (\mu {\rm m}) \\ 0.7 \\ 0.8 \\ 1.0 \\ 1.6 \\ 1.01 \\ 1.00 \\ 0.80 \\ 0.327 \\ 0.288 \\ 0.189 \\ \end{array}$	$\sigma_{tr} (\mu m)$ $\varepsilon_n (\mu m)$ 0.70.50.80.51.00.51.60.51.010.51.000.50.800.50.3270.50.2880.50.1890.5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\sigma_{tr} (\mu m)$ $\varepsilon_n (\mu m)$ β (cm) $\sigma_{tz} (\mu m)$ 0.70.50.202.140.80.50.262.141.00.50.402.141.60.51.022.141.010.50.412.141.000.50.402.140.800.50.262.140.800.50.262.140.3270.54.282.140.2880.53.332.140.1890.51.432.14	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\sigma_{tr} (\mu m)$ $\varepsilon_n (\mu m)$ β (cm) $\sigma_{tz} (\mu m)$ n_b/n_0 $k_b \sigma_{tz}$ 0.70.50.202.1410.090.80.50.262.1410.091.00.50.402.1410.091.60.51.022.1410.091.010.50.412.140.250.0451.000.50.402.142.50.140.800.50.262.14250.450.3270.54.282.1410.090.2880.53.332.14250.450.1890.51.432.142501.4	$\sigma_{tr} (\mu m)$ $\varepsilon_n (\mu m)$ β (cm) $\sigma_{tz} (\mu m)$ n_b/n_0 $k_b \sigma_{tz}$ E (GeV)0.70.50.202.1410.0910.80.50.262.1410.0911.00.50.402.1410.0911.60.51.022.1410.0911.010.50.412.140.250.04511.000.50.402.142.50.1410.800.50.262.14250.4510.3270.54.282.1410.091000.2880.53.332.14250.451000.1890.51.432.142501.4100

Evolution of longitudinal phase space

Two contributions to the energy spread:

- Correlated energy spread: very important but can potentially be removed by dechirping or beam loading
- Uncorrelated/slice energy spread: fundamental limit, it spoils the longitudinal emittance irreversibly

Uncorrelated energy spread as figure of merit:

$$\delta = \frac{1}{\langle E_z \rangle} \left[\frac{1}{N_b} \int [E_z(x, y, \xi) - \langle E_z \rangle(\xi)]^2 n_b dx dy d\xi \right]^{1/2}$$

Uncorrelated energy spread in quasilinear regime

LOA

<u>Hue et al., PRR 3, 043063 (2021)</u>

Observation:

There is generally a tradeoff between energy efficiency and beam quality (here uncorrelated energy spread) when e+ beam loading is involved.

The positron problem Plasma electron motion and transverse beam loading

The positron problem

PHYSICAL REVIEW ACCELERATORS AND BEAMS 27, 034801 (2024)

Positron acceleration in plasma wakefields

Gevy J. Cao[®], ^{*} Carl A. Lindstrøm[®], and Erik Adli[®] Department of Physics, University of Oslo, 0316 Oslo, Norway

Sébastien Corde LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France

Spencer Gessner

SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

(Received 6 October 2023; accepted 5 February 2024; published 5 March 2024)

Plasma acceleration has emerged as a promising technology for future particle accelerators, particularly linear colliders. Significant progress has been made in recent decades toward high-efficiency and high-quality acceleration of electrons in plasmas. However, this progress does not generalize to the acceleration of positrons, as plasmas are inherently charge asymmetric. Here, we present a comprehensive review of historical and current efforts to accelerate positrons using plasma wakefields. Proposed schemes that aim to increase energy efficiency and beam quality are summarized and quantitatively compared. A dimensionless metric that scales with the luminosity-per-beam power is introduced, indicating that positron-acceleration schemes are currently below the ultimate requirement for colliders. The primary issue is *electron motion*; the high mobility of plasma electrons compared to plasma ions, which leads to nonuniform accelerating and focusing fields that degrade the beam quality of the positron bunch, particularly for high efficiency acceleration. Finally, we discuss possible mitigation strategies and directions for future research.

Cao, Lindstrøm et al., PRAB 27, 034801 (2024)

<u>Cao, Lindstrøm et al., PRAB 27, 034801 (2024)</u>

Why such a gap between e- and e+?

Plasma electrons used for positron focusing are very light, much lighter than ions used for electron focusing in blowout:

$$m_e \ll m_i$$

Plasma electron motion similar to ion motion in blowout, and can be described by a phase advance in the bunch:

$$\Delta \phi_i \simeq k_i \Delta \zeta = \sqrt{\frac{\mu_0 e^2}{2} \frac{Z \sigma_z N}{m_i}} \sqrt{\frac{r_e \gamma n_0}{\epsilon_{nx} \epsilon_{ny}}} \text{ ion motion } \lim_{i \to \infty} \frac{10^{-1}}{10^{-2}}$$

$$\Delta \phi_e \simeq k_e \Delta \zeta = \sqrt{\frac{\mu_0 e^2}{2} \frac{\sigma_z N}{\gamma_{pe} m_e}} \sqrt{\frac{r_e \gamma \Delta n}{\epsilon_{nx} \epsilon_{ny}}} \text{ electron motion}$$

electron motion limit: $\Delta \phi_e \lesssim \pi/2$

10³

10²

10¹

10⁰

 $\eta_{extr} \tilde{Q}/\tilde{\varepsilon}_n$

 $\tilde{\mathcal{L}}_{\mathsf{P}}$

luminosity-per-power,

<u>Cao, Lindstrøm et al., PRAB 27, 034801 (2024)</u>

Electron motion limit embedded in luminosity-per-power

Cao, Lindstrøm et al., PRAB 27, 034801 (2024)

Electron motion limit embedded in luminosi

• Can rewrite $\tilde{\mathscr{Z}}_P$ using $\Delta \phi_e$:

$$\tilde{\mathscr{L}}_{P} = \sqrt{\frac{16\pi}{\gamma}} (\Delta \phi_{e})^{2} \left(\frac{\eta_{\text{extr}}}{k_{p}\sigma_{z}}\right) \gamma_{pe} \sqrt{\frac{n_{0}}{\Delta n}}$$

What do we learn from e⁺ schemes:

Overcoming electron motion limit is a must

Charge and efficiency also important (favoring nonlinear regimes) Scheme

Quasilinear regime (sim Quasilinear regime (exp Nonlinear regime Donut driver (No. 1) Donut driver (No. 2) Finite-radius channel (co Finite-radius channel (co Thin, warm, hollow cha Asymmetric hollow cha

- e^- nonlinear regime (sin
- e^- nonlinear regime (ex

Conventional technolog

Cao, Lindstrøm et

		1	(a)			unloaded <i>E</i> _z	—— load	ed $E_z = 0.5$
er-pow	/er	$\begin{bmatrix} \sigma \\ \sigma $	10	8		4	2	E^{z}
Density (cm ⁻³)	Gradient (GV/m)	Charge (pC)	Energy efficiency	Emittance (mm m rad)	Energy spread per gain	Uncorrected energy spread	Fin. energy (GeV)	$\Delta \phi_e{}^{\rm a}$
5×10^{16} 1×10^{16} 7.8×10^{15} 5×10^{16}	1.3 1 1.6 8 0	4.3 85 102	30% 40% 26%	0.64 127 ^c 8	$\sim 10\%^{b}$ $\sim 14\%$ 2.4% 0.3%	0.7%	1 21 5.2 35.4	0.77 0.51 7.6
5×10^{16} 5×10^{16} 5×10^{17} 5×10^{17}	40 30 30	189 52 84	0.17% 3.5% 3% 4.8%	1.5 ^d 0.38 0.015	6% 0.86% ^e	1% 0.73% ~0.01%	1 5.5 1.1	0.30 7.1 34 269
2×10^{17} 1×10^{16} 3.1×10^{16}	20 3.5 4.9	15 100 490	5.5% <u>47%^f</u> 33%	31 7.4 67	3.4% 6% 5.3%		~10 1.45 14.6	0.67 2.0 6.5
2×10^{10} 1.2×10^{16} Not applicable	-10 -1.4 0.1	800 40 596	37.5% 22% 28.5% ^h	0.133° 2.8 0.11	1.1% 1.6% 0.35%	≲1% 	1500 1.1 1500	292 3.0 Not applic
B 27. 034	.801 (2	2024)	10 [ɯn] X -10	400 0 (a) 0 positron beam		200	0 ξ[μ 10 ^[u0]	[m] 10 [m]
	$\frac{\text{Density}}{(\text{cm}^{-3})}$ $\frac{5 \times 10^{16}}{5 \times 10^{16}}$ $\frac{5 \times 10^{16}}{5 \times 10^{16}}$ $\frac{5 \times 10^{16}}{5 \times 10^{17}}$ $\frac{5 \times 10^{17}}{2 \times 10^{17}}$ $\frac{1 \times 10^{16}}{1.2 \times 10^{16}}$ Not applicable	EF-DOWER Density Gradient (cm ⁻³) Gradient (GV/m) 5×10^{16} 1.3 1×10^{16} 1 7.8×10^{15} 1.6 5×10^{16} 8.9 5×10^{16} 40 5×10^{16} 40 5×10^{17} 30 2×10^{17} 30 2×10^{17} 20 1×10^{16} 3.5 3.1×10^{16} -10 1.2×10^{16} -10 1.2 × 10^{16} -1.4 Not applicable 0.1	Er-power $\begin{bmatrix} 1 \\ 3 \\ 0 \\ -1 \\ \xi \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$ Erc/ ω_p] 12 Density Gradient Charge (GV/m) (pC) 5 × 10 ¹⁶ 1.3 4.3 1 × 10 ¹⁶ 1 85 7.8 × 10 ¹⁵ 1.6 102 5 × 10 ¹⁶ 8.9 13.6 5 × 10 ¹⁶ 40 189 5 × 10 ¹⁷ 30 52 5 × 10 ¹⁷ 30 84 2 × 10 ¹⁷ 20 15 1 × 10 ¹⁶ 3.5 100 3.1 × 10 ¹⁶ -10 800 1.2 × 10 ¹⁶ -1.4 40 Not applicable 0.1 596	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	$\begin{array}{c} \textbf{Pr-power} \qquad \qquad$	$\begin{array}{c} \textbf{Er-power} \\ \textbf{er-power} \\ \textbf{f}_{g} $	$\begin{array}{c} \text{Pr-power} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Strategies to fill the gap:

$$\tilde{\mathscr{L}}_{P} = \sqrt{\frac{16\pi}{\gamma}} (\Delta \phi_{e})^{2} \left(\frac{\eta_{\text{extr}}}{k_{p}\sigma_{z}}\right) \gamma_{pe} \sqrt{\frac{n_{0}}{\Delta n}}$$

Slice-by-slice matching

 $\Delta \phi_e$

- Plasma electron temperature
- Spread plasma electrons: different plasma electrons to focus different positron beam slices $k_p X_0 n_p/n$

Strategies to fill the gap:

$$\tilde{\mathscr{L}}_{P} = \sqrt{\frac{16\pi}{\gamma}} (\Delta \phi_{e})^{2} \left(\frac{\eta_{\text{extr}}}{k_{p}\sigma_{z}}\right) \gamma_{pe} \sqrt{\frac{n_{0}}{\Delta n}}$$

Slice-by-slice matching

 $\Delta \phi_e$

 η_{extr}

- Plasma electron temperature
- Spread plasma electrons: different plasma electrons to focus different positron beam slices
- Energy recovery to improve efficiency
- ${\bf \bullet}$ Decrease emittance to compensate for low efficiency in $\tilde{\mathscr{L}}_P$
- Low focusing and large beta function
- High Lorentz factor for plasma electrons

- and thus with transverse beam loading and electron motion
- (e.g. emittance, uncorrelated energy spread)

• Energy efficiency and luminosity-per-power comes with a strong positron load,

• For most regimes, there is a tradeoff between energy efficiency and beam quality

• Luminosity-per-power scaling and electron motion highlights future directions

Thank you for your attention