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EuPRAXTIA 15 the first accelerator user facility based on plasma acceleration technology.
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The first ESFRI plasma accelerator project and their first accelerator project since 2016.
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EuPRAXTIA 1s the first accelerator user facility based on plasma acceleration
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Introduction

do we have applications in FuPRAXIA that need
lugh-charge lower-quality electron beams?
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Introduction

do we have applications in FuPRAXIA that need
lugh-charge lower-quality electron beams?
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Introduction

do we have applications in FuPRAXIA that need
lugh-charge lower-quality electron beams?

BETATRON SOURCES
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Plasma-based  acceleration of 5
positrons 1s  significantly lagging | e .
behind, due to inherently asymmetric - o) SR *%o..;..
structure of the wake fields, which would . - > ) &
normally be defocussing and decelerating 1 = lh
for a positively charged particle. el
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Several schemes have been numerically proposed in order to overcome this issue, including

hollow plasma channels and finite plasma columns

10

4 1) 44 (a) electron beam
N . s iy — ; : Phys. Rev. Lett. 127, 104801 (2021)
%. 0'—% ; 6 § 5 0 l / 6 g
e \ 4 £ | Phys. Rev. A. Beams 23, 121301 (2020)
-2 /// —9 = »
—4 1 ? _— 2
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Programmatic experimental work currently not possible due to the lack of suitable facilities

Only FACET-II at SLAC will in principle be able to host plasma-acceleration experiments
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The issue is so complex that recent proposals for plasma-based colliders try to
circumvent 1t with hybrid schemes

The Hybrid Asymmetric Linear Higgs Factory (HALHF) Concept

Facility length: ~3.3 km
Turn-around loops

Positron Damping rings _ (31 GeV e*/drivers)
source (3 GeV) Driver source, '
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(5-31 GeV et/drivers)

Electron
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e

Interaction point
(250 GeV c.0.m.)

RF linac
Beam-delivery system : o
Beam-deliver, system Positron transfer linie (500 Ge%l/ e)-/) Plasma-accelerator linac (5GeV &)
with turn-around loop (31 GeVe) (16 stages, ~32 GeV per stage)
. . : e-
(31 Gev & ) Sca/e.' 500 m — Q+
——— 0+ BDS
\ J ey B-BDS

31 GeV positron
beamline based on

conventional technology

Is it possible to devise a long-term program to introduce
plasma-based acceleration in the positron arm?

B. Foster et al., NJP 25, 093037 (2023)
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» Plasma-based positron acceleration
is a challenging task!

» Most research has been carried out numerically

» In preparation for the design of a plasma-based
(or plasma-assisted...) positron arm for a collider,
it is necessary to experimentally test
these accelerators, in order to identify the
best and most practical ways to accelerate

positrons in a plasma.

» A first step would thus be to provide positron
beam facilities to the community
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Plasma-based positron acceleration
is a challenging task!

Most research has been carried out numerically

In preparation for the design of a plasma-based
(or plasma-assisted...) positron arm for a collider,
it is necessary to experimentally test
these accelerators, in order to identify the
best and most practical ways to accelerate
positrons in a plasma.

A first step would thus be to provide positron
beam facilities to the community

—

For meaningful experimental studies, it
is necessary to provide witness beams
with remarkably demanding
characteristics:
- short duration: G, ~ 10s um

- low normalized emittance: g, ~ um

Q ~0.1-20pC
E ~ 100s of MeV
AE/E ~ few %

- fs-scale synchronization and pm-scale overlap

- “reasonable charge™:
- “reasonable energy”:

- low energy spread:

with driver beams
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» Plasma-based positron acceleration
is a challenging task!

» Most research has been carried out numerically

» In preparation for the design of a plasma-based
(or plasma-assisted...) positron arm for a collider,
it is necessary to experimentally test

these accelerators, in order to identify the
best and most practical ways to accelerate
positrons in a plasma.

» A first step would thus be to provide positron

beam facilities to the community

For meaningful experimental studies, it
is necessary to provide witness beams
with remarkably demanding
characteristics:
- short duration: G, ~ 10s um
- low normalized emittance: g, ~ um
Q~0.1-20pC
E ~ 100s of MeV
AE/E ~ few %
- fs-scale synchronization and pm-scale overlap
with driver beams

—
- “reasonable charge™:

- “reasonable energy”:

- low energy spread:

A possible roadmap for the experimental development of high-quality positron beams could be:

1. SHORT TERM ( 5-10 years)

2. MEDIUM TERM (10 — 20 years)

3. LONG TERM (>20 years):

Development of positron test beam facilities in Europe
(e.g LuPRAXIA, EPAC...)

- Converging onto specific acceleration schemes
- Experimental demonstration of 10s of GeV high-quality beams

- ~100 GeV lagh quality beams in a hybrid scheme

(conventional imector + plasma accelerating modules)
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We are NOT proposing that we can build a fully plasma-accelerated positron

beam with collider-like characteristics!

Rather, we are exploring the possibility of delivering positron beams of sufficient quality
to be injected and accelerated in plasma accelerating cavities.

Several plasma-based facilities are currently considering this option, e.g.:
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We are NOT proposing that we can build a fully plasma-accelerated positron

beam with collider-like characteristics!

Rather, we are exploring the possibility of delivering positron beams of sufficient quality
to be injected and accelerated in plasma accelerating cavities.

Several plasma-based facilities are currently considering this option, e.g.:

EuPRAXIA /i first ESFRI plasma accelerator project

electron
diagnostics rator eie(to b am
converter tfapole conditio

 { L
bunch length
measuri '

ement

,,,,,,

positron beam
energy selector

R. Assman et al., Eur. Phys. J. Special Topics (2020)

https://www.clfstfc.ac.uk/Pages/EPAC.aspx
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A Interaction of ~ 1.4 nC

electron beam with energy
Sy || o up to 800 MeV with a lead
converter target of
thickness 1 < L. <25 mm.

Dog-leg configuration to

separate the positrons and
emittance mask

gas'—'iet/

1st dipole

scintillator [2M dipole  scintillator

M. Streeter et al, Sci. Rep. 64, 044001 (2024)
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I o L L
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200 400 600
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M. Streeter et al, Sci. Rep. 64, 044001 (2024) * Not measured, inferred from simulations

E P S RC AHIPS, December 2024




ONIVERSITY
BELFAST INFN

Positron sources (@ EuPRAXIA
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Start-to-end-simulations
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® 3mm 1GeV:
50 4 /
10° 3 e Zmm 2GeV: 52 pC/’;
Imm — 3GeV:

&

Working e 05mm
26 pC

Charge [pC]
g

dN/dE [MeV™1]
;a

10° 3 0 9pC
10" et 104 l
10" = ~ : — : ..=-‘_='-—'-=":'—:-'—‘—' """"""""""
0 1000 2000 3000 4000 5000 TN es 10 15 20 25 30
Energy [MeV] Thickness[mm)]

AHIPS, December 2024




QUEEN'S

TR Next steps INFN

® 3mm 1GeV:
50 4 %
10° 4 ° om 2GeV: 52 PC//'
mm . /
Working ® 05mm ol s 3GeV: Y,

26 pC

Charge [pC]
g

10° 5 2 9pC
10" 5 K 10l
10° = -, : , : . .-‘_ """"""""""
0 1000 2000 3000 4000 5000 T o5 1o 15 20 25 30
Energy [MeV] Thickness[mm)]

2. Energy selection (currently line designed for 500 MeV) possible with electromagnets
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2. Energy selection (currently line designed for 500 MeV) possible with electromagnets

3. At the moment, line designed for laser-driven wakefield studies. The line is tantalizingly close to
the Exin line of SPARC. Coupling it for beam-driven studies is complex, but not impossible
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2. Energy selection (currently line designed for 500 MeV) possible with electromagnets

3. At the moment, line designed for laser-driven wakefield studies. The line is tantalizingly close to
the Exin line of SPARC. Coupling it for beam-driven studies is complex, but not impossible

4. Further optimization of the positron beam characteristics (mainly higher charge and smaller
size) using more complex beamlines currently under investigation

E P S RC AHIPS, December 2024




QUEEN'S
UNIVERSITY
BELFAST

Other applications

INFN

Solid target

Gas € ey 3 B
\ y k - | st
wSER SRR A | R i 02 04 06 08 1 12
—— Eq- (GeV)
@ i Maane ) i) e R
——> 3 2P i i
10cm 70em  Son5em 02 05 5

G. Sarri et al., Nature Comm. (2015)

R. Warwick et al., Phys. Rev. Lett. (2017)

N. Shukla et al., J. Plasma Phys. (2018)

2. Radiobiology at ultra-high dose-rates at and beyond FLASH

10V
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C. McAnespie et al., IRJOBP (2024)

C. McAnespie et al., PRE (2024)  C. McAnespie et al., arXiv:2309.06870v2(2024)

3. High-flux bremsstrahlung and Compton sources
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= Positron wakefield acceleration is significantly under-developed, mainly due
to the lack of experimental facilities suited for these studies

= 100TW-scale lasers can provide narrowband (~5%) positron beams of sufficient
quality to be guided and accelerated in a plasma wakefield

= First proof-of-principle experiments at 100 TW
validate the numerical expectations

= Start-to-end simulations confirm

g 00

analytical expectations

= Extension to 10s of pC positron beams possible with PW-scale lasers

10V O

= Several other key applications of strong
socletal and scientific impact
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T'’hanks for your attention!

Gianluca Sarri
gsarn@qub.ac.uk
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