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Introduction



The action for a massive, non-minimally coupled spin-1 spectator
field Xµ in the FLRW background metric gµν takes the form: C. Capanelli et al. , arXiv:2405.19390

C. Capanelli et al. , arXiv:2403.15536

SX =
∫

d4x
√

−g
(
LM

X + LN
X

)
, LM

X ≡ −1
4
gµαgνβXµνXαβ+m

2
X

2
gµνXµXν ,

LN
X ≡ −ξ1

2
gµνRXµXν+ξ2

2
RµνXµXν .

Remarks
Gauge-breaking terms could arise from the generalized Stuckelberg action:

SS =
∫

d4x
√

−g

{
− 1

4
gµαgνβXµνXαβ

+ 1
2

[
gµν − ξ1

R

m2
X

gµν + ξ2
Rµν

m2
X

]
(∂µΦX + mXXµ)(∂νΦX + mXXν)

}
Xµ(x) → X ′

µ(x) = Xµ(x) + ∂µλ(x), ΦX (x) → Φ′
X (x) = ΦX (x) − mXλ(x).

Unitary gauge
Φ′

X = 0

For the choice ξ1 = ξ2/2, the Xµ has only one non-minimal coupling.
√

−gξ1GµνX
µX ν

O. Özsoy et al. , arXiv: 2310.03862

X0 does not have a kinetic term; it is an auxiliary field.
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Action for the transverse modes

Action for the longitudinal mode

A2
L ≡

k2 + a2m2
eff,t

a2m2
eff,t

,

The emergence of two effective masses

m2
eff,t ≡ m2

X − ξ1R(a) + 1
2

ξ2R(a) + 3ξ2H
2(a),

m2
eff,x ≡ m2

X − ξ1R(a) + 1
6

ξ2R(a) − .ξ2H
2(a).

S̃L =
∫

dτ

∫
d3k

(2π)3

{
1
2

1
A2

L(a, k)
|X ′

L(τ, k⃗)|2−1
2
a2m2

eff,x|XL(τ, k⃗)|2
}

,

S̃T =
∑
T=±

∫
dτ

∫
d3k

(2π)3

{
1
2

|X ′
T(τ, k⃗)|2−1

2
[k2 + a2m2

eff,x]|XT(τ, k⃗)|2
}

,

Note that A2
L is not

necessarily positive for all k
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Instabilities



Ghost instability
C. Capanelli et al. , arXiv:2405.19390
C. Capanelli et al. , arXiv:2403.15536

For an arbitrary choice of non-minimal couplings m2
eff,t might be negative.

Hence, we are looking for the values of ξ1, ξ2 for which

s(a, ξ1, ξ2) = sign
[
k2 + a2m2

eff,t
a2m2

eff,t

]
> 0 for all values of k .

m2
eff,t = m2

X − 3
[(

ξ1 − 1
2

ξ2

)
(3w (a) − 1) − ξ2

]
H2(a),

The effective mass has two sources of time-dependency

w (a) = [−1, 1]
One can get rid of one of them by choosing ξ1 = ξ2/2. O. Özsoy et al. , arXiv: 2310.03862

m2
X/H2(a) > −3ξ2

In general case:

f (w , ξ1, ξ2) < η−1
e , f (w , ξ1, ξ2) ≡ 3

[(
ξ1 − 1

2
ξ2

)
(3w (a) − 1) − ξ2

]
η−1
e ≡ m2

X/H2
inf ∈ (0, 1)
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EoMs for the non-minimally coupled vectors
X ′′

L + ω2
L(a)XL = 0, X ′′

± + ω2
±(a)X± = 0

The angular frequency for two transverse modes:

ω2
±(a, k) ≡ k2+a2m2

eff,x = k2+a2
{
m2

X−
[
3
(

ξ1 − 1
6

ξ2

)
(3w (a) − 1) + ξ2

]
H2(a)

}
The angular frequency for the longitudinal mode:

ω2
L(a, k) ≡ k2m

2
eff,x

m2
eff,t

+ a2m2
eff,x

− k2

k2 + a2m2
eff,t

[
a′′

a
+
m′′

eff,t
meff,t

+ 2
a′

a

m′
eff,t

meff,t
− 3

(a′meff,t + m′
eff,ta)2

k2 + a2m2
eff,t

]
For k ∈ {ke , keff,m} and mX < He

the angular frequency is negative

Tachyonic enhancement of both polarizations??
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Instability of short-wavelength modes
In the limit, k → ∞, one finds

ω2
±(a, k) → k2, ω2

L(a, k) → k2m
2
eff,x

m2
eff,t

, as k → ∞.

During inflation
m2

eff,x

m2
eff,t

= 1, ω2
L(a, k) = k2, as k → ∞.

For ξ2 = 0
m2

eff,x

m2
eff,t

= 1, ω2
L(a, k) = k2, as k → ∞.

However, for w ̸= −1, ξ2 ̸= 0

ω2
L(a, k) → −∞, as k → ∞, and m2

eff,x < 0.

Uncontrolled tachyonic enhancement of short-wavelength modes!
C. Capanelli et al. , arXiv:2405.19390
C. Capanelli et al. , arXiv:2403.15536
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The credibility of the model might be restored if one imposes the
positivity condition on m2

eff,x analogously to m2
eff,t. Namely,

f̃ (w , ξ1, ξ2) ≡ 3[3w (a) − 1]
(

ξ1 − 1
6

ξ2

)
+ ξ2,

is required to meet the condition

f̃ (w , ξ1, ξ2) < η−1
e .

In addition, to avoid super-luminal propagation of short-wavelength
modes, one demands

m2
eff,x ≤ m2

eff,t, ξ2 > 0.

Instability of short-wavelength modes

C. Capanelli et al. , arXiv:2405.19390
C. Capanelli et al. , arXiv:2403.15536
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The model is well-defined in the
region:

ξ1 ∈
(

−η−1
e

12
,

η−1
e

6

)
,

ξ2 ∈
[
0,

η−1
e

3
+ 4ξ1

)
.

....

....

....

....

....

....

....

....

....

....

The viable parameter space shrinks
as the ratio mX/Hini decreases.
For mX → 0, it collapses to a point
(ξ1, ξ2) = (0, 0).
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Inflationary and post-inflationary
evolution



As an illustration, we consider
the α-attractor T-model:
R. Kallosh et al. , arXiv:1306.5220
R. Kallosh et al. , arXiv:1311.0472

V (ϕ) = Λ4 tanh2n
(

|ϕ|√
6αMPl

)

The inflationary scale
3 · 10−3 MPl 1

During reheating

V (ϕ) ≃ Λ4
(

|ϕ|
MPl

)2n

Free parameter
n ∈ {1, 2}
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Evolution of transverse modes

★

▲

★

▲

Transverse modes do not
experience tachyonic growth.

Frequency remains positive
throughout the whole evolution.
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Evolution of the longitudinal mode

★

▲

★

▲

★

▲

★

▲
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The most significant
enhancement occurs
along the curve
m2

eff,t = 0 = m2
eff,x
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Energy density



The vacuum expectation value of the non-minimally coupled vector
field energy density has several contributions...

Redefined longitudinal mode

⟨ρ̂X ⟩ = ⟨ρ̂±⟩ + ⟨ρ̂L⟩

⟨ρ̂±⟩ = ⟨ρ̂M
± ⟩ + ⟨ρ̂ξ1

± ⟩ + ⟨ρ̂ξ2
± ⟩,

⟨ρ̂L⟩ = ⟨ρ̂M
L ⟩ + ⟨ρ̂ξ1

L ⟩ + ⟨ρ̂ξ2
L ⟩,

Transverse modes

Redefined longitudinal mode

At late times: ⟨ρ̂ξ1,ξ2
±,L ⟩ ≪ ⟨ρ̂M

± ⟩ ≪ ⟨ρ̂M
L ⟩

14



Tachyonic enhancement
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Energy density of
the longitudinal polarization
has a peak structure
at a ≥ a⋆.

Divergent behavior
for k > ke
requires regularization.
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▲

★

▲

★

Depending on the values of
the non-minimal couplings
spectral energy density of
spin-1 field might exceed
or fall behind the minimal case.

Qualitatively, the non-minimal
spectral energy density
resembles the minimal case.
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Regularization via normal ordering

▲

★

Applied at late times,
in the adiabatic regime:

⟨ρ̂L⟩ ≈ 1
a4

∫
d3k

(2π)3
ωL|βL|2,

ωL ≈
(
k2 + a2m2

X

)1/2
,

|βL|2 ≈ 1
2ωL

|X ′
L|2+ωL

2
|XL|2−1

2
.

Emergence of the second
UV peak!!
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▲

✶

■
★

The strongest enhancement
is observed for ξ1, ξ2 for
which m2

eff,t ≈ 0 ≈ m2
eff,x.

The least significant
enhancement is observed
for ξ1, ξ2 for which ξ1 = ξ2/2.
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Relic abundance



Relic abundance

Quadratic reheating
ΩXh

2

0.12
≃ NX

a3
eH

3
e

mX

He

(
He

1012 GeV

)2
Trh

104 GeV

Quartic reheating
ΩXh

2

0.12
≃ 1

0.12
NX

a3
eH

3
e

mX

He

(
He

108 GeV

)5/2
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Relic abundance

ΛUV = ke ΛUV ∼ 30ke

ΩXh
2 = ΩDMh2
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Summary



Summary

• The inclusion of the non-minimal couplings leads to the
emergence of two instabilities of the model: ghost instability
and uncontrolled growth of short-wavelength modes.

• The viable parameter space of the model shrinks with
η−1
e ≡ m2

X/Hinf , and collapses to a single point as mX → 0.
• It has been established that the long-wavelength part of the

spectrum has a peak structure, centered around the
characteristic momentum scale k⋆.

• To cure the UV divergence of the energy density, regularization
via normal ordering has been applied. This scheme reveals the
existence of a second high-k peak, whose amplitude is sensitive
to the values of ξ1, ξ2.

• We have demonstrated that accounting for the finite duration of
reheating has a significant impact on the production of
non-minimally coupled vectors.
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