Bubbletrons and Dark Matter

lason Baldes Work done with Dichtl, Gouttenoire, Sala, 2306.15555, 2403.05615

Astroparticle Symposium, Pascal Institute 27 November 2024

Future landscape of GW observatories in 10-15 years.

Significant interest for astrophysics and fundamental physics/cosmology.

Future landscape of GW observatories in 10-15 years.

Significant interest for astrophysics and fundamental physics/cosmology.

Making use of the Experimental GW programme.

 \rightarrow Motivates study of strong phase transitions with relativistic walls, and alternative scenarios for baryon, DM, PBH production...

Early Universe First Order Phase Transition

Image credit: G. Servant

Barrier in the potential leads to phase transition via bubble nucleation

Early Universe First Order Phase Transition

Image credit: G. Servant

Barrier in the potential leads to phase transition via bubble nucleation

Image credit: D. Weir

Bubble dynamics create out-of-equilibrium conditions and GWs.

• Begin in radiation domination

- Begin in radiation domination
- A scalar field becomes stuck behind a barrier

- Begin in radiation domination
- A scalar field becomes stuck behind a barrier
- We will be interested in supercooled phase transitions, where the universe becomes vacuum dominated (or close to it).

- Begin in radiation domination
- A scalar field becomes stuck behind a barrier
- We will be interested in supercooled phase transitions, where the universe becomes vacuum dominated (or close to it).
- Temperature evolution avoids graceful exit problem

- Begin in radiation domination
- A scalar field becomes stuck behind a barrier
- We will be interested in supercooled phase transitions, where the universe becomes vacuum dominated (or close to it).
- Temperature evolution avoids graceful exit problem
- Bubbles accelerate and collide, reheating universe: $\rho_{vac} \rightarrow Bubble walls \rightarrow Oscillations \rightarrow Radiation.$

One quantity of importance: Lorentz factor of the bubble wall Processes of importance for us here in calculating frictional P_{max} :

One quantity of importance: Lorentz factor of the bubble wall Processes of importance for us here in calculating frictional P_{\max} : 1. Particle crossing wall.

One quantity of importance: Lorentz factor of the bubble wall Processes of importance for us here in calculating frictional P_{\max} : 1. Particle crossing wall.

2. Transition radiation.

One quantity of importance: Lorentz factor of the bubble wall Processes of importance for us here in calculating frictional P_{\max} : 1. Particle crossing wall.

2. Transition radiation.

3. Pair production \rightarrow typically subdominant for $P_{\rm max}.$

Driving pressure:

$$\mathcal{P}_{\mathrm{Driving}} = V(\phi_{\mathrm{symmetric}}) - V(\phi_{\mathrm{broken}}) = c_{\mathrm{vac}} v_{\phi}^4$$

1. Friction Pressure: Particle crossing wall.

Driving pressure:

$$\mathcal{P}_{\mathrm{Driving}} = V(\phi_{\mathrm{symmetric}}) - V(\phi_{\mathrm{broken}}) = c_{\mathrm{vac}} v_{\phi}^4$$

1. Friction Pressure: Particle crossing wall.

The maximum LO friction pressure in the ballistic regime is:

- Bödeker and Moore 0903.4099

$$\mathcal{P}_{\mathrm{LO}} \simeq \sum_{a} \Delta(m_a^2) \int \frac{d^3 p f_a^{\mathrm{eq}}}{(2\pi)^3 2 E_a} \equiv g_a \frac{v_{\phi}^2 T_n^2}{24}$$

Driving pressure:

$$\mathcal{P}_{\mathrm{Driving}} = V(\phi_{\mathrm{symmetric}}) - V(\phi_{\mathrm{broken}}) = c_{\mathrm{vac}} v_{\phi}^4$$

2. Friction Pressure: Transition radiation.

Driving pressure:

$$\mathcal{P}_{\mathrm{Driving}} = V(\phi_{\mathrm{symmetric}}) - V(\phi_{\mathrm{broken}}) = c_{\mathrm{vac}} v_{\phi}^4$$

2. Friction Pressure: Transition radiation.

NLO friction pressure in case of gauged PTs: - Bödeker and Moore 1703.08215, Gouttenoire, Jinno, Sala 2112.07686

$$\mathcal{P}_{\mathrm{NLO}} pprox \mathcal{O}(1) imes lpha_X \gamma_{\mathrm{wall}} M_V T_n^3 \log\left(rac{v_\phi}{T_n}
ight)$$

For $\Delta V > \mathcal{P}_{LO} + \mathcal{P}_{NLO}$ effectively runaway

$$\gamma_{\mathrm{wall}} \simeq rac{1}{3} rac{R_{\mathrm{coll}}}{R_{\mathrm{nuc}}} pprox \left(rac{H}{eta}
ight) rac{T_n M_{\mathrm{pl}}}{v_{\phi}^2} \gg 1$$

For $\Delta V > \mathcal{P}_{LO} + \mathcal{P}_{NLO}$ effectively runaway

$$\gamma_{\mathrm{wall}} \simeq rac{1}{3} rac{R_{\mathrm{coll}}}{R_{\mathrm{nuc}}} pprox \left(rac{H}{eta}
ight) rac{T_n M_{\mathrm{pl}}}{v_{\phi}^2} \gg 1$$

For $\mathcal{P}_{\text{LO}} < \Delta V \simeq \mathcal{P}_{\text{NLO}}$ friction limited $\gamma_{\text{wall}} \simeq \frac{\Delta V}{\alpha_X M_X T_n^3 \log(v_{\phi}/T_n)} \gg 1$

For $\Delta V > \mathcal{P}_{\rm LO} + \mathcal{P}_{\rm NLO}$ effectively runaway

$$\gamma_{\mathrm{wall}} \simeq rac{1}{3} rac{R_{\mathrm{coll}}}{R_{\mathrm{nuc}}} pprox \left(rac{H}{eta}
ight) rac{T_n M_{\mathrm{pl}}}{v_{\phi}^2} \gg 1$$

For $\mathcal{P}_{\text{LO}} < \Delta V \simeq \mathcal{P}_{\text{NLO}}$ friction limited $\gamma_{\text{wall}} \simeq \frac{\Delta V}{\alpha_X M_X T_n^3 \log(v_{\phi}/T_n)} \gg 1$

Frictional processes unavoidably result in relativistic shells of particles being produced.

For $\Delta V > \mathcal{P}_{\rm LO} + \mathcal{P}_{\rm NLO}$ effectively runaway

$$\gamma_{
m wall} \simeq rac{1}{3} rac{R_{
m coll}}{R_{
m nuc}} pprox \left(rac{H}{eta}
ight) rac{T_n M_{
m pl}}{v_{\phi}^2} \gg 1$$

For $\mathcal{P}_{\mathrm{LO}} < \Delta V \simeq \mathcal{P}_{\mathrm{NLO}}$ friction limited

$$\gamma_{\text{wall}} \simeq \frac{\Delta V}{\alpha_X M_X T_n^3 \log(v_{\phi}/T_n)} \gg 1$$

Frictional processes unavoidably result in relativistic shells of particles being produced.

How do the shells of relativistic particles behave?

 \rightarrow Possible implications for Baryon, DM, GW production.

For $\Delta V > \mathcal{P}_{\rm LO} + \mathcal{P}_{\rm NLO}$ effectively runaway

$$\gamma_{
m wall} \simeq rac{1}{3} rac{R_{
m coll}}{R_{
m nuc}} pprox \left(rac{H}{eta}
ight) rac{T_n M_{
m pl}}{v_{\phi}^2} \gg 1$$

For $\mathcal{P}_{\mathrm{LO}} < \Delta V \simeq \mathcal{P}_{\mathrm{NLO}}$ friction limited

$$\gamma_{\text{wall}} \simeq \frac{\Delta V}{\alpha_X M_X T_n^3 \log(v_{\phi}/T_n)} \gg 1$$

Frictional processes unavoidably result in relativistic shells of particles being produced.

How do the shells of relativistic particles behave?

 \rightarrow Possible implications for Baryon, DM, GW production.

Shell properties and free streaming conditions - IB, Dichtl, Gouttenoire, Sala, 2403.05615 Application: DM from shell collisions - IB, Dichtl, Gouttenoire, Sala, 2306.15555

Shell-crossing production of DM "Bubbletron"

Picture: Radiated Reflected Shell \rightarrow Shell Collision \rightarrow DM production

Shell-crossing production of DM "Bubbletron"

Picture: Radiated Reflected Shell \rightarrow Shell Collision \rightarrow DM production

Shell-crossing production of DM "Bubbletron"

Picture: Radiated Reflected Shell \rightarrow Shell Collision \rightarrow DM production

DM "Bubbletron" Yield

Assume heavier Y fermion with charge q_Y acts as DM.

Found the DM Yield using:

$$Y_{Y} \equiv \frac{n_{Y}}{s_{\rm RH}} = \frac{R_{\rm coll}}{3s_{\rm RH}} n_{b}^{2} P_{b \to V} P_{b \to V} \sigma_{VV \to Y\bar{Y}}$$
$$\sigma_{VV \to Y\bar{Y}} = \frac{q_{Y}^{4}g^{4}}{4\pi s} f_{Y\bar{Y}} \xrightarrow[s \gg M_{Y}^{2}]{} \frac{q_{Y}^{4}g^{4}}{4\pi s} \left(\log \frac{s}{M_{Y}^{2}} - 1\right)$$

DM "Bubbletron" Yield

 $\beta/H = 20$ and $T_n/T_{eq} = 1$ for the benchmarks.

Parameter scan over:

 $\begin{array}{ll} 1 \geq T_n/T_{\rm eq} \geq 10^{-4}, & 1 \geq g \geq 10^{-5}, & 10^4 \geq \beta/H \geq 10, \\ 1 \geq c_{\rm vac} \geq 10^{-3}, & 10^{-4} < g^2 q_Y^2/4\pi < 0.1 \\ \text{with the perturbativity condition } P_{b \rightarrow V} < 1 \end{array}$

Production at Bubble Collision Instead?

Recent re-evaluation of heavy particle production from wall collisions.

- Mansour, Shakya 2308.13070, Shakya 2308.16224

- From IB et al. 2403.05615 - Giudice, Hyun Min Lee, Pomarol, Shakya 2403.03252

Production at Bubble Collision Instead?

Recent re-evaluation of heavy particle production from wall collisions.

- Mansour, Shakya 2308.13070, Shakya 2308.16224

- From IB et al. 2403.05615 - Giudice, Hyun Min Lee, Pomarol, Shakya 2403.03252

Where is the vacuum energy transferred:

- Runaway: Bubble Wall
- Non-Runaway (i.e. due to V production): Particle Shells

Production at Bubble Collision Instead?

Recent re-evaluation of heavy particle production from wall collisions.

- Mansour, Shakya 2308.13070, Shakya 2308.16224

- From IB et al. 2403.05615 - Giudice, Hyun Min Lee, Pomarol, Shakya 2403.03252

Where is the vacuum energy transferred:

- Runaway: Bubble Wall
- Non-Runaway (i.e. due to V production): Particle Shells

Bubbletron production dominant in second case.

Bubbletron DM Expected GW signals

Current state-of-the art estimates.

Bubbletron DM Expected GW signals

Current state-of-the art estimates. Open question: effect of shell free-streaming length.

Conclusions

Conclusions

Conclusions

- Motivated in part by GW signal: interest in supercooled PTs.
- Possible production of DM/PBHs/Baryon asymmetry.
- Need to carefully consider particle production/shell evolution.
- Both to understand DM/Baryon production, determine $T_{\mu\nu}$ and GWs.

Conclusions

Conclusions

- Motivated in part by GW signal: interest in supercooled PTs.
- Possible production of DM/PBHs/Baryon asymmetry.
- Need to carefully consider particle production/shell evolution.
- Both to understand DM/Baryon production, determine $T_{\mu\nu}$ and GWs.

Further slides

Ultra-relativistic particle shells - more generally

Channel		Multiplicity \mathcal{N} per incoming particle	$\begin{array}{c} \text{Momentum of} \\ \text{shell particles} \\ (p_c \text{ or } p_{\text{X}}) \end{array}$	$\bar{L}_b = (L_b^2 - \frac{1}{p_X^2})^{\frac{1}{2}}$ $(L_b = \text{effective}$ shell thickness)
Leading-order interaction (LO): $a \rightarrow a$ Particles acquiring a mass [43, 50]		1	$\Delta m^2/T_n$	$\frac{R_c}{2(\Delta m/T_n)^2}$
$ \begin{array}{l} \mbox{Gauge interaction } \alpha_{\rm D} \ll 4\pi: \\ \mbox{Bremsstrahlung radiation} \\ a \rightarrow bc \\ [44-47] \mbox{ and App. A.1} \end{array} $	transmitted	$2\frac{\alpha_{\rm D}}{\pi}L_mL_E$	$\gamma_{\mathrm{w}}m_{c,h}$	$\frac{R_c}{2\gamma_w^2}$
	reflected	$\frac{\alpha_{\rm D}}{\pi}L_m^2$		
Gauge interaction $\alpha_{\rm D} \simeq 4\pi$: Hadronization [23]	string fragmentation ejected quarks	$\frac{\alpha_{ m D}}{\pi}L_E$	$\gamma_{\mathrm{w}} v_{\phi}$	$\frac{R_c}{2\gamma_w^2}$
Scalar interaction $\lambda \phi^4/4!$: Scalar Bremsstrahlung $a \rightarrow bc$ App. A.3	transmitted	$\lambda^2 v_\phi^2/192\pi^2 m_{c,h}^2$	$\gamma_{\rm w} m_{c,h}^2 / E_a$	$\frac{R_c}{2\gamma_w^2}$
	reflected	$\lambda^2 v_\phi^2/32\pi^2 E_a^2$	$\gamma_{\rm w} m_{c,h}$	
Heavier particle production $\lambda \phi^2 X^2/4$ (Azatov-Vanvlasselaer mechanism $\phi \to XX$) $M_X \gg v_{\phi}$ [45]		$ \begin{array}{c} \lambda^2 v_{\phi}^2 / 192 \pi^2 M_X^2 \times \\ \Theta \left(\gamma_{\rm w} - M_X^2 / T_n v_{\phi} \right) \end{array} $	M_X^2/T_n	$\frac{R_c}{2(M_X/T_n)^2}$

Shell properties and free streaming conditions - IB, Dichtl, Gouttenoire, Sala, 2403.05615 Particle production from shell collisions - IB, Dichtl, Gouttenoire, Sala, 2306.15555

Processes to prevent shell free streaming:

- Phase space saturation/perturbativity, i.e. finite-density corrections \rightarrow affect calculation of shell production.
- $\bullet\,$ Momentum changes of the shell due to $2\to 2$ interactions with the bath.
- $\bullet\,$ Thermalization, i.e. $3\to 2$ interactions within the shells and between the shell and the bath.
- Shell interactions with the collided bubble walls (important for free streaming up until shell-shell collision).

Shell Free Streaming Conditions

Shell Free Streaming Conditions

Shell Free Streaming Conditions

Bubble collisions

End of the phase transition

- The phase transition completes through bubble nucleation/percolation.
- The bubble collisions lead to a gravitational wave signal.

$$\Omega_{
m GW}(
u)\equiv rac{d\Omega_{
m GW}}{d\log
u}$$

The spectra depend on the macroscopic properties

- Latent heat $\alpha \approx \rho_{\rm vac}/\rho_{\rm rad}$.
- **2** Inverse timescale of the transition $\beta = -\frac{dS}{dt}$. (Sets bubble size).
- The Hubble scale (determines redshifting).
- The wall velocity v_w . For us $v_w \simeq 1$.

We can calculate these quantities from microphysics and then match onto results from simulations/semi-analytic studies.

Bubble collisions

Left: envelope approximation. Right: bulk flow model. Image from Konstandin 1712.06869

The GW spectrum

For such supercooled PTs: seems to be captured by the *bulk flow* model.

See: Ryusuke Jinno, Masahiro Takimoto 1707.03111, Thomas Konstandin 1712.06869

Comparison of bulk flow to simulations.

Cutting et al. 2005.13537 (also see Lewicki, Vaskonen 2007.04967)

- Amplitude scales as $(R_*H_*)^2 \approx (H_*/\beta)^2$.
- The peak frequency is set by the redshifted mean bubble size.
- Below the peak: region of $\Omega_{\rm GW}(\nu) \propto \nu^{0.9}$. \rightarrow Eventually $\Omega_{\rm GW}(\nu) \propto \nu^3$ for superhorizon modes.
- Above the peak: $\Omega_{\rm GW}(
 u) \propto
 u^{-2.1}$.
- Second peak: suppressed by $\sim n_b/H_*^3(m_\phi/M_{\rm Pl})^2$.

Three estimates are used:

- (3+1)D Lattice simulation of scalar field Cutting et al. 2005.13537
- Hybrid simulation including gauge field Lewicki/Vaskonen 2012.07826
- Semi-analytic bulk flow model Konstandin 1712.06869

These all return similar estimates. Detectable above astro foregrounds.

Uncertainties in the GW spectrum

Illustration of envelope vs bulk flow - Konstandin 1712.06869

- The high frequency tail is completely different in the envelope $(\propto 1/f)$ compared to the bulk flow model $(\propto 1/f^2)$.
- The latter more closely matches 3D lattice simulations for strong supercooling.
- The full simulations have limited resolution/frequency range.

Common systematic: Ignores expansion during PT itself

Effect calculated in the envelope approximation assuming radiation domination

Figure 5. The step plot of the fraction of the maximum value of Δ^{F} to the maximum value of Δ^{M} versus σ . When $\sigma \leq O(10)$, the corresponding GW spectrum is significantly influenced by the expansion of the universe. Even when $\sigma \sim 100$, the GW spectrum is still be depressed by 50%

From Zhong et al, JHEP 02 (2022) 077 arXiv:2107.01845.

Friction Force and Hydrodynamic obstruction

Equation of Motion for ϕ :

$$\Box \phi + \frac{\partial V(\phi)}{\partial \phi} + \sum_{i} \frac{dm_{i}^{2}}{d\phi} \int \frac{d^{3}p}{(2\pi)^{3} 2E_{i}} f_{i}(p, z) = 0$$

Self-consistent determination of $\phi(z)$ and $f_i(p, z)$ typically difficult.

- Espinosa et al. 1004.4187

- Laurent and Cline 2204.13120

 $\label{eq:clarifications about f_{eq} term: - Wen-Yuan Ai, Garbrecht, Tamarit 2109.13710$$ Hydrodynamic obstruction at large α? - Wen-Yuan Ai et al. 2401.05911, Beyond steady state - Lewicki et al. 2402.15408$$$

Here we will assume a ballistic limit/runaway wall is reached.

(i.e. hydrodynamic obstruction overcome and MFP larger than wall thickness) .

Example: Electroweak baryogenesis - basic picture

Image from - Gavela, Hernandez, Orloff, Pène, Quimbay [hep-ph/9406289]

- CP violating collisions with the bubble walls lead to a chiral asymmetry.
- Sphalerons convert this to a Baryon Asymmetry.
- This is swept into the expanding bubble where sphalerons are suppressed.

Electroweak baryogenesis - Requirements

Electroweak baryogenesis requires:

- A strong first order phase transition $(\phi_n/T_n\gtrsim 1)$
- Sufficient CP violation

However in the SM:

- The H boson mass is too large
- Quark masses are too small

Requires new EW-scale physics.

Experimental signatures

BSM Experimental signatures for EWBG

- Collider signals associated with V(H) modificiation.
- **2** Electric Dipole Moments associated with low scale CP violation.
- Gravitational waves from the strong FOPT.

Future Experimental searches - GWs

From a simulation by Weir et al.

Singlet model - Cline et al. 2102.12490

Only the strongest transitions are detectable by LISA.

But: problem if $v_{\text{wall}} \simeq 1$ (strongest transitions).

- Less of the plasma is pushed by the wall at high $v_{\rm wall}$.
- This suppresses the BAU.
- EWBG typically occurs in a radiation dominated background.

From: Cline, Kainulainen 2001.00568 Also see: Dorsch, Huber, Konstandin 2106.06547