Probing Reheating with Graviton Bremsstrahlung

Yong Xu, MITP (JGU Mainz)

AstroParticle Symposium 2024 Paris-Saclay University, Nov 27

Inflation dilutes everything expotentially

- After inflation: the Universe is cold
- However, Big Bang Nucleosynthesis needs a Thermal background

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト …

э.

Reheating

• A theory describing how inflaton ϕ energy \implies thermal background

- Basic ingredients:
 - Couplings $\mu \phi h^2$, $y \phi \bar{\psi} \psi$
 - Oscillating $\phi \implies$ particles production \implies interaction \implies thermal bath

 \implies define temperature

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 二臣 - のへで

• Complex with non-perturbative phenomena [Dolgov, Kirilova '89] [Traschen, Brandenberger '90] [Kofman, Linde, Starobinsky '97]...

Yong Xu, MITP (JGU Mainz)

Inflaton Oscillations and Post-Inflationary Reheating

Marcos A.G. Garcia (Madrid, IFT and Madrid, Autonoma U.), Kunio Kaneta (Korea In Mambrini (IICI ab. Orcav), Keith A. Olive (Minnerota II., Theor. Phys. Inst. and Minner	st. Advanced Study, Seou	ıl), Yann
Manipinii (belab, orsay), keiti A. Olive (Minnesota O., Theor. Phys. list. and Minne	-sola 0.)	
Dec 19, 2020		
39 nades		
Published in: JCAP 04 (2021) 012		
Published: Apr 7, 2021		
e-Print: 2012.10756 [hep-ph]		
DOI: 10.1088/1475-7516/2021/04/012		
Report number: UMN-TH-4006/20, FTPI-MINN-20/37, IFT-UAM/CSIC-20-185, KIAS-P20071		
View in: HAL Science Ouverte, AMS MathSciNet, ADS Abstract Service		
🖹 pdf 🖃 cite 🗒 claim	a reference search	

• Talks on different aspects of (p)reheating by N. Bernal, S. Clery, M. Garcia, M. Gross, K. Kaneta, D. Maity, J. Trankle

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Temperature is important: WIMP

• Freeze-out in standard case (radiation phase after reheating) $T_{fo} < T_{rh} \implies$

$$Y \sim \frac{1}{\langle \sigma v \rangle} \implies \langle \sigma v \rangle \sim 10^{-9} \text{GeV}^{-2} \iff \text{too large, ruled out!}$$

• Freeze-out during reheating with $T_{\rm fo} > T_{\rm rh} \implies$ much smaller $\langle \sigma v \rangle \implies$ evade experimental constraints

[Bernal, YX 2209.07546]

< □ > < 同 > < 回 > < 回 >

• More examples: see talk by N. Bernal

Temperature is important: Leptogenesis

• $T_{\rm rh} > M_1 \implies$ thermal leptogenesis

• $T_{\rm rh} < M_1 \implies$ non-thermal leptogenesis $\phi \rightarrow H\ell N$

[Drees, YX 2401.02485]

イロト 不得 トイヨト 不良トー

• Knowing the background temperature or physics before BBN is important!

(日) (四) (문) (문) (문) (문)

• But, what are the dynamics controlling the background evolution?

Evolution of Background

- Shape inflaton potential $V(\phi) \sim m_\phi^2 \phi^2$
- $\bullet \ {\rm Couplings} \ \mu \, \phi h^2 {\rm ,} \ y \, \phi \bar \psi \ \Longrightarrow \ \Gamma_\phi \sim \mu^2/m_\phi \, {\rm ,} \ y^2 m_\phi$

$$\frac{d\rho_{\phi}}{dt} + 3H\,\rho_{\phi} = -\Gamma_{\phi}\,\rho_{\phi}; \quad \frac{d\rho_{R}}{dt} + 4H\,\rho_{R} = +\Gamma_{\phi}\,\rho_{\phi}$$

æ

Evolution of Background for different $T_{\rm rh}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□

How To Probe Reheating?

transparent to GW

<ロト <回ト < 注ト < 注ト = 注

• Probing Reheating with GWs!

- Show a simple and unavoidable source of GWs via graviton Bremsstrahlung
- 2 Demonstrate how such GW spectrum can help to probe reheating

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Graviton Bremsstrahlung during Reheating

• If, reheating: $\phi \mathcal{FF}$ (decay) or $\phi^2 \mathcal{FF}$ (annihilation)

• Then, graviton production

gravitons emission \implies propagation \implies SGWB

[Nakayama, Tang 1810.04975] [Huang, Yin 1905.08510] [Barman, Bernal, YX, Zapata 2301.11345] [Bernal, Cléry, Mambrini, YX 2311.12694]

Graviton Production Rate

[Nakayama, Tang 1810.04975] [Barman, Bernal, YX, Zapata 2301.11345] [Bernal, Cléry, Mambrini, YX 2311.12694]

ヘロト 人間 ト イヨト イヨト

GW Spectrum

• GW amplitude:

$$\begin{split} \Omega_{\rm GW}(f) &= \frac{1}{\rho_c} \frac{d\rho_{\rm GW}}{d\ln f} = \Omega_R^0 \, \frac{d(\rho_{\rm GW}/\rho_R)}{d\ln f} \\ &\sim \Omega_R^0 \, \frac{d(\rho_{\rm GW}/\rho_R)}{d\ln E_g} \end{split}$$

• Differential spectrum

$$\frac{d(\rho_{\rm GW}/\rho_R)}{dE_g} \propto \left(\frac{d\Gamma}{dE_g}\,\frac{1}{\Gamma_\phi}\right) \times \left(\frac{E_g}{m_\phi}\right)$$

 \sim (differential BR) $\,\times\,({\rm energy}\ {\rm fraction})$

Recall that

$$\frac{d\Gamma}{dE_g} \propto \frac{\mu^2}{M_P^2} \frac{m_\phi}{E_g} \quad \text{and} \quad \frac{\Gamma_\phi}{m_\phi} \propto \frac{\mu^2}{m_\phi}$$

Expect

Bremsstrahlung GWs

• Peak frequency: $f_{\text{peak}} \simeq \frac{m_{\phi}}{2} \frac{1}{2\pi} \frac{a_{\text{rh}}}{a_0} \simeq 10^{10} \left(\frac{m_{\phi}}{10^{13} \text{ GeV}}\right) \left(\frac{10^{13} \text{ GeV}}{T_{\text{rh}}}\right) \text{Hz}$ • At the peak: $\Omega_{\text{GW}} \propto \left(\frac{m_{\phi}}{10^{13} \text{ GeV}}\right)^2$

[Barman, Bernal, YX, Zapata 2301.11345] [Bernal, Cléry, Mambrini, YX 2311.12694] [YX, 2407.03256]

Probing Reheating $(m_{\phi} \text{ and } T_{\mathsf{rh}})$ with Bremsstrahlung GWs

 $\bullet~$ If null signal at a frequency $\implies~m_{\phi}\gtrsim 10^{13}~{\rm GeV}$ with a specific $T_{\rm rh}$ ruled out

Yong Xu, MITP (JGU Mainz)

2407.03256

→ Ξ →

Inflaton Scattering and Decay

• Inflaton scattering with decay product

• Inflaton decays (possible only at 1-loop level) in Einstein-Hilbert framework

A Systematic Comparison

• Left $m_\phi \gg T_{\rm rh}$: $1 \to 3$ dominates

• Right $m_{\phi} \lesssim T_{\rm rh}$: $2 \to 2$ dominate

[YX. 2407.03256]

★週 ▶ ★ 国 ▶ ★ 国

GW Spectrum: Bosonic Decay vs Bosonic Annhilation

Probing inflaton decay or annihilation

[Bernal, Cléry, Mambrini, YX 2311.12694]

・ 何 ト ・ ヨ ト ・ ヨ ト

- Reheating explains Cold \rightarrow Thermal (important for many phenomena)
- Two important parameters
 - (1) m_{ϕ}
 - ${\color{black} 2} \hspace{0.1 cm} T_{\rm rh}$
- Unavoidable SGWB from Graviton Bremsstrahlung, dominates if $m_{\phi} \gg T_{\rm rh}$
- Future GW experiments could potentially probe reheating

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

э

Probing Physics before BBN: Astro-Cosmo-Collider Synergy

Thanks for your attention!

э

Polynomial Inflation

- \bullet Monomial Chaotic Inflation $V(\phi)\sim \phi^p$ has been ruled out
- A General and Renormalizable Potential

 $V(\phi)\sim b\,\phi^2+c\,\phi^3+d\,\phi^4$

[Drees, YX 2104.03977] [Drees, YX 2209.07545]

크

<ロ> (四) (四) (三) (三) (三)

• During reheating: $V(\phi) \sim \phi^2$

Alpha Attractor Inflation

• The E model [Kallosh and Linde '13]

$$V(\phi) = \lambda M_P^4 \left(1-e^{-\sqrt{\frac{2}{3\alpha}}\frac{\phi}{M_P}}\right)^n$$

 \bullet During reheating, i.e . $\phi \ll M_P \implies V(\phi) \sim \phi^n$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - の々で

Evolution of Background for n>2

GW Spectrum: Bosonic decay vs Fermionic decay

• GW amplitude lager in bosonic decay for n > 2 with $V(\phi) \sim \phi^n$

$$\Omega_{\rm GW}(f) \propto \frac{d(\rho_{\rm GW}/\rho_R)}{d\ln f}$$

• The distinction in GW \implies a novel channel to probe the shape parameter n

Thermal GWs during Reheating

• Graviton from thermal plasma [Ghiglieri, Laine 1504.02569] [Ringwald, Schütte-Engel, Tamarit 2011.04731]

 $\Gamma_g \sim \frac{T^3}{M_P^2}$

[Bernal, YX 2410.21385]

æ

イロト イヨト イヨト イヨト

Ultra-high frequency GW Detection Prospect

$$h_c(f) \equiv \frac{H_0}{f} \sqrt{\frac{3}{2\pi^2} \,\Omega_{\rm GW}(f)} \simeq 1.26 \times 10^{-18} \left(\frac{\rm Hz}{f}\right) \sqrt{h^2 \,\Omega_{\rm GW}(f)}\,, \label{eq:hc}$$

FIMP from LLP decay

• DM freeze-in from a gauge charged parent particle decay

$$P \rightarrow \mathsf{DM} + f_{\mathsf{SM}}$$

• $T_{\rm FI} > T_{\rm rh}$, freeze-in during reheating:

Interesting interplay between collider searches and inflationary constraints!

[Becker, Copello, Harz, Lang, YX 2306.17238]

크

メロト メポト メヨト メヨト

[YX 2308.15322]

æ

<ロ> (四) (四) (三) (三) (三)