From WIMPs to FIMPs with Low-Temperature Reheating

Nicolás BERNAL جامعة نيويورك أبوظي NYU ABU DHABI

AstroParticle Symposium 2024 November 25-29, 2024

1. High vs. Low Reheating Temperature

Standard Cosmology

* We know that at BBN, $T \sim O(MeV)$, the universe was dominated by SM radiation

- * Standard cosmology
 - → extrapolation up to the reheating epoch $T \sim 10^{10}$ GeV (?)
 - → SM entropy conserved
 - \rightarrow early universe dominated by SM radiation
 - → instantaneous reheating

Cosmic Reheating

* Cosmic Inflation

- \rightarrow Exponentially fast expansion of the universe
- \rightarrow Gives rise to an empty Universe

* Cosmic reheating

- → Transition from an inflaton-dominated to a SM radiation-dominated era
- \rightarrow End of reheating at T_{rh}
- $\rightarrow T_{rh} > T_{bbn} \sim 4 \text{ MeV}$

Cosmic Reheating

* Cosmic Inflation

- \rightarrow Exponentially fast expansion of the universe
- \rightarrow Gives rise to an empty Universe

* Cosmic reheating

- → Transition from an inflaton-dominated to a SM radiation-dominated era
- \rightarrow End of reheating at T_{rh}
- $\rightarrow T_{rh} > T_{bbn} \sim 4 \text{ MeV}$
- \rightarrow Unknown equation-of-state parameter ω

 \rightarrow Unknown scaling of the temperature

$$T(a) = T_{\rm rh} \left(\frac{a_{\rm rh}}{a}\right)^{\alpha}$$

 $\rho_{\phi}(a) \propto a^{-3(1+\omega)}$

2. Singlet Scalar DM

2306.14943 and 2408.08950 J. Silva-Malpartida, NB, J. Jones-Pérez, R. Lineros

Singlet Scalar DM

McDonald '07

S is a singlet scalar, protected by a Z_2 $V = \mu_S^2 S^2 + \lambda_S S^4 + \lambda_{HS} |H|^2 S^2$

2+1 free parameters:

- * m_s DM mass
- * λ_{HS} Higgs portal
- * λ_s DM quartic coupling

Singlet Scalar DM - WIMP

Singlet Scalar DM - FIMP

Singlet Scalar DM – WIMP & FIMP

WIMPs and FIMPs with Low-temperature reheating

13

WIMPs and FIMPs with Low-temperature reheating

3. Minimal Freeze-in

2412.soon NB, C.S. Fong, Ó. Zapata

Minimal Freeze-in

- * Additional gauged $U(1)_D$
- * Mediator: Massless gauge boson $\hat{X}_{\mu\nu}$
- * DM: Dirac fermion X

$$\mathcal{L} \supset \bar{\chi} \left(i \not\!\!\!D - m_{\chi} \right) \chi - \frac{\epsilon}{2} F^{\mu\nu} F'_{\mu\nu}$$

* Free parameters: \rightarrow DM mass: m_x \rightarrow DM-SM coupling: $\kappa \equiv \frac{\epsilon e'}{e}$

Minimal Freeze-in 10^{-9} Xenon1T 10^{-10} -R 10^{-11} 10^{-12} 10^{-4} 10^{-2} 10^{2} 10^{4} 10^{0} 10^{6} $m_{\chi}~[{ m GeV}]$

Minimal Freeze-in: Instantaneous reheating

Conclusions & Outlook

- Dark Matter exists
- The nature of Dark Matter is still unknown
- Dark Matter could have been produced during **Cosmic Reheating** \rightarrow Large uncertainties (T_{rh} , equation of state, scaling of SM temperature)
- Parameter space greatly enlarged $m < 10^{14}$ CoV
 - $\rightarrow m < 10^{14} \text{ GeV}$
 - \rightarrow smaller DM-SM couplings, but within the range of future detectors
- Non-standard cosmological scenarios drastically change the standard picture
- Non-standard cosmologies provide a smooth transition between different thermal and non-thermal DM
- Non-standard cosmologies
 - $\rightarrow\,$ relax strong experimental constraints on thermal DM
 - $\rightarrow\,$ increase detection chances of non-thermal DM

Merci!