Probing non-minimal coupling through super-horizon instability and secondary gravitational waves

Ayan Chakraborty

Department of Physics, IIT Guwahati, India

AstroParticle Symposium 2024

[Motivation](#page-2-0)

2 [Spectrum of non-minimally coupled scalar fluctuations](#page-5-0)

3 [Generation of secondary gravitational waves by the scalar field source](#page-20-0)

[Constraining non-minimal coupling strength\(](#page-25-0) ξ) based on observational [bound](#page-25-0)

[Important findings](#page-29-0)

Scalar fluctuations, non-minimally coupled to gravity, can be treated as a potential source of secondary gravitational waves.

Scalar fluctuations, non-minimally coupled to gravity, can be treated as a potential source of secondary gravitational waves.

Significant post-inflationary long-wavelength(IR) instability of the source field beyond a certain coupling strength, leaves a visible imprint on secondary gravitational wave spectrum, which can be probed by various future GW observatories.

Scalar fluctuations, non-minimally coupled to gravity, can be treated as a potential source of secondary gravitational waves.

Significant post-inflationary long-wavelength(IR) instability of the source field beyond a certain coupling strength, leaves a visible imprint on secondary gravitational wave spectrum, which can be probed by various future GW observatories.

Constraining non-minimal coupling through PLANCK bound on tensor-to-scalar ratio and ΔN_{eff} .

Cosmic Evolution

▶ Cosmic evolution and dynamics of Hubble horizon through modified expansion history.

Why do we need reheating phase?

- ▶ At the end of early accelerated expansion(Inflation), universe was left in a super cold state of vanishing entropy, and particle no. density.
- ▶ To achieve successful nucleosynthesis, universe must transit to a hot, thermalized radiation-dominated phase.

Why do we need reheating phase?

- ▶ At the end of early accelerated expansion(Inflation), universe was left in a super cold state of vanishing entropy, and particle no. density.
- ▶ To achieve successful nucleosynthesis, universe must transit to a hot, thermalized radiation-dominated phase.

Inflaton→ SM+BSM → hot thermal bath → reheating

General set up of non-minimally coupled scalar field (y) system

▶ Lagrangian of the system:

$$
\mathcal{L}_{\left[\phi,\chi\right]} = -\underbrace{\sqrt{-g}}_{a^4(\eta)} \left(\frac{1}{2} \partial_\mu \phi \partial^\mu \phi + V(\phi) + \frac{1}{2} \partial_\mu \chi \partial^\mu \chi + \frac{1}{2} m_\chi^2 \chi^2 + \frac{1}{2} \xi R \chi^2 \right)
$$
\n
$$
a \to \text{scale factor; } R \to \text{Ricci scalar; } \xi \to \text{non-minimal coupling}
$$

General set up of non-minimally coupled scalar field (y) system

▶ Lagrangian of the system:

 $\mathcal{L}_{[\phi,\chi]} = -$ √ $-\frac{1}{g}\left(\frac{1}{2}\right)$ $a^4(\eta)$ $\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi + V(\phi) + \frac{1}{2}\partial_{\mu}\chi\partial^{\mu}\chi + \frac{1}{2}m_{\chi}^{2}\chi^{2} + \frac{1}{2}$ $rac{1}{2}\xi R\chi^2$

 $a \rightarrow$ scale factor; $R \rightarrow$ Ricci scalar; $\xi \rightarrow$ non-minimal coupling

- ▶ Fourier decomposition: $\chi(\eta,\vec{x}) = \int \frac{d^3k}{(2\pi)}$ $\frac{d^3k}{(2\pi)^3}$ $\chi_k(\eta)$ $e^{i\vec{k}.\vec{x}}$
- ▶ EoM of rescaled field mode($X_k = a(\eta) \chi_k(\eta)$):

$$
X''_k + \left[k^2 + a^2 m_X^2 - \frac{a''}{a}(1 - 6\xi)\right] X_k = 0 \tag{1}
$$

 $R = (6a''/a^3)$

Dynamical equation and appearance of IR instability(Tachyonic instability)

▶ Form of scale factor:

$$
a(\eta)=a_{\text{end}}\left(\tfrac{1+3w_\phi}{2|\eta_{\text{end}}|}\right)^{\frac{2}{1+3w_\phi}}\left(\eta-\eta_{\text{end}}+\tfrac{2|\eta_{\text{end}}|}{1+3w_\phi}\right)^{\frac{2}{1+3w_\phi}};\,\,\eta_i<\eta\leq\eta
$$

Dynamical equation and appearance of IR instability(Tachyonic instability)

 \blacktriangleright Form of scale factor:

$$
a(\eta)=a_{\text{end}}\Big(\tfrac{1+3w_\phi}{2|\eta_{\text{end}}|}\Big)^{\tfrac{2}{1+3w_\phi}}\bigg(\eta-\eta_{\text{end}}+\tfrac{2|\eta_{\text{end}}|}{1+3w_\phi}\Big)^{\tfrac{2}{1+3w_\phi}}; \; \eta_i<\eta\leq\eta
$$

▶ We are interested in IR modes $(k < a_{end}H_{end} = k_{end})$ of very low mass case, $m_\chi \approx 0$

Dynamical equation and appearance of IR instability(Tachyonic instability)

 \blacktriangleright Form of scale factor:

$$
a(\eta)=a_{\text{end}}\Big(\tfrac{1+3w_\phi}{2|\eta_{\text{end}}|}\Big)^{\tfrac{2}{1+3w_\phi}}\bigg(\eta-\eta_{\text{end}}+\tfrac{2|\eta_{\text{end}}|}{1+3w_\phi}\bigg)^{\tfrac{2}{1+3w_\phi}}; \; \eta_i<\eta\leq\eta
$$

▶ We are interested in IR modes $(k < a_{end}H_{end} = k_{end})$ of very low mass case, $m_v \approx 0$

► Inflationary evolution:
$$
X_k'' + \underbrace{\left[k^2 - \frac{2(1 - 6\xi)}{\eta^2}\right]}_{\omega_k^2 < 0 \text{(Instability)} \to \text{ for } \xi < 1/6} X_k = 0
$$

▶ Post-inflationary evolution: $X''_k +$ \lceil $k^2 - \frac{2(1-3w_{\phi})(1-6\xi)}{2}$ $(1+3w_{\phi})^2\Big(\eta+\frac{3(1+w_{\phi})}{a_{\text{end}}H_{\text{end}}(1+i)}$ a_end H_{end} $(1+3w_\phi)$ χ^2 1 ${\omega_k^2} < 0 \rightarrow$ for $w_{\phi} > 1/3$, $\xi > 1/6$, for $w_{\phi} < 1/3$, $\xi < 1/6$ $X_k = 0$

Inflationary and post-inflationary vacuum solution

Adiabatic vacuum solution

Inflationary vacuum solution: $X_k^{\text{(inf)}} =$ $\sqrt{\pi |\eta|}$ $\frac{\pi |\eta|}{2} e^{i(\pi/4+\pi\nu_{1}/2)} H^{(1)}_{\nu_{1}}(k|\eta|)$ Post-inflationary vacuum solution:

$$
\mathcal{X}_k^{\text{(reh)}}=\sqrt{\tfrac{\bar{\eta}}{\pi}}\text{exp}\bigg[\tfrac{3ik\mu}{a_{\text{end}}H_{\text{end}}}+\tfrac{i\pi}{4}\bigg]K_{\nu_2}(ik\bar{\eta})
$$

EoS and ξ dependent indices: $v_1 = \sqrt{ }$ $\sqrt{9-48\xi}/2; \; \mu = \frac{(1+w_{\phi})}{(1+3w_{\phi})}$ $\frac{(1+w_{\phi})}{(1+3w_{\phi})}$;

$$
\nu_2 = \frac{\sqrt{3(1+w_{\phi})\left(3(1-w_{\phi})^2 + 16\xi(3w_{\phi}-1)\right)}}{2\sqrt{1+3w_{\phi}}\sqrt{1+4w_{\phi}+3w_{\phi}^2}}; \ \ \bar{\eta} = (\eta + 3\mu/a_{\rm end}H_{\rm end})
$$

[Introduction to Bogoliubov coefficients](#page-33-0)

Inflationary and post-inflationary vacuum solution

Adiabatic vacuum solution

Inflationary vacuum solution: $X_k^{\text{(inf)}} =$ $\sqrt{\pi |\eta|}$ $\frac{\pi |\eta|}{2} e^{i(\pi/4+\pi\nu_{1}/2)} H^{(1)}_{\nu_{1}}(k|\eta|)$ Post-inflationary vacuum solution:

$$
\mathcal{X}_k^{(\mathrm{reh})} = \sqrt{\tfrac{\bar{\eta}}{\pi}}\mathsf{exp}\bigg[\tfrac{3i k \mu}{a_{\mathrm{end}} H_{\mathrm{end}}} + \tfrac{i\pi}{4}\bigg] \mathcal{K}_{\nu_2} (ik\bar{\eta})
$$

EoS and ξ dependent indices: $v_1 = \sqrt{ }$ $\sqrt{9-48\xi}/2; \; \mu = \frac{(1+w_{\phi})}{(1+3w_{\phi})}$ $\frac{(1+w_{\phi})}{(1+3w_{\phi})}$; s

$$
\nu_2 = \frac{\sqrt{3(1+w_{\phi})\left(3(1-w_{\phi})^2 + 16\xi(3w_{\phi}-1)\right)}}{2\sqrt{1+3w_{\phi}}\sqrt{1+4w_{\phi}+3w_{\phi}^2}}; \ \ \bar{\eta} = (\eta + 3\mu/a_{\rm end}H_{\rm end})
$$

▶ General reheating field solution: $X_k(\eta) = \alpha_k X_k^{\text{(reh)}} + \beta_k X_k^{*(\text{reh})}$ k $\alpha_k, \ \beta_k \longrightarrow$ Bogoliubov coefficients

[Introduction to Bogoliubov coefficients](#page-34-0)

Time-evolution of long-wavelength(IR) modes of scalar fluctuations

¹ A.chakraborty, S.Maiti, and D.Maity [arxiv: 2408.07767]

Ayan Chakraborty (IITG) Probing non-minimal coupling through super-horizon instants and secondary and secondary $\frac{9}{2}$

Defining field power spectrum and energy-density spectrum

Field power spectrum: $\mathcal{P}_{\chi}(k, \eta) = \frac{k^3}{2\pi^2 k^3}$ $\frac{k^3}{2\pi^2 a^2} |X_k|^2$

Defining field power spectrum and energy-density spectrum

- **Field power spectrum:** $\mathcal{P}_{\chi}(k, \eta) = \frac{k^3}{2\pi^2 k^3}$ $\frac{k^3}{2\pi^2 a^2} |X_k|^2$
- ▶ Field energy-density spectrum:

 $\rho_{\chi_k}(\eta) = \frac{k^3}{4\pi^2_s}$ $\frac{k^3}{4\pi^2 a^4} (|X'_k|^2 + k^2 |X_k|^2) = (k^2/a^2) \mathcal{P}_\chi(k,\eta)$

Energy spectrum of IR modes for $1/3 < w_0 < 1$

$$
\rho_{\chi_k}(\eta > \eta_{\text{end}}) \propto \begin{cases}\n(\sin^2(k\eta)/a(\eta)^4)(k/k_{\text{end}})^{2(2-\nu_1-\nu_2)} & \text{for} \quad 0 \le \xi < 3/16 \\
(\sin^2(k\eta)/a(\eta)^4)(k/k_{\text{end}})^{2(2-\nu_2)} & \text{for} \quad \xi = 3/16 \\
(\cos^2(k\eta)/a(\eta)^4)(k/k_{\text{end}})^{2(2-\nu_2)} & \text{for} \quad \xi > 3/16\n\end{cases}
$$
\n(2)

Behavior of energy-density spectrum

$$
w_{\phi} = 0 \rightarrow \xi_{\text{cri}} \approx 5/48
$$

$$
w_{\phi} = 1/2 \rightarrow \xi_{\text{cri}} \approx 4.073
$$

¹ A.chakraborty, S.Maiti, and D.Maity [arxiv: 2408.07767] Ayan Chakraborty (IITG) Probing non-minimal coupling through su and section instants 2024 11

Model independent definition of reheating p arameters($N_{\rm re}$, $T_{\rm re}$)

Reheating point: $\rho_R(a_{\rm re}) = \rho_\phi(a_{\rm re})$

Reheating e-folding number: $N_{\text{re}} = \frac{1}{3(1+1)}$ $\frac{1}{3(1+w_\phi)}$ In $\left(\frac{90H_\mathrm{end}^2M_{\rho l}^2}{\pi^2g_\mathrm{re}\mathcal{T}_\mathrm{re}^4}\right)$

Defining
$$
k_{\text{end}}
$$
 and k_{re} :
\n $(k_{\text{end}}/a_0) = \left(\frac{43}{11g_{\text{re}}}\right)^{1/3} \left(\frac{\pi^2 g_{\text{re}}}{90}\right)^{\alpha} \frac{H_{\text{end}}^{1-2\alpha} T_{\text{per}}^{4\alpha-1} T_0}{M_{\rho}^{2\alpha}}$, $(k_{\text{end}}/k_{\text{re}}) =$
\n $\exp\left(\frac{N_{\text{re}}(1+3w_{\phi})}{2}\right)$, $\alpha = 1/3(1+w_{\phi})$, $a_0 \to$ present scale factor, and
\n $T_0 = 2.725$ K is the present CMB temperature

 1 L. Dai, M. Kamionkowski and J. Wang, PRL. 113, 041302 (2014) 2 J. L. Cook, et al. JCAP 04 (2015) 047 Ayan Chakraborty (IITG) Probing non-minimal coupling through su and secondary 27th November 2024 12

Generation of secondary(induced) gravitational wave(SGW)

- ▶ Perturbed FLRW metric: $ds^2 = a^2(\eta) \left[-d\eta^2 + (\delta_{ij} + h_{ij})dx^i dx^j \right]$, transverse-traceless tensor $\rightarrow \partial^i h_{ij} = h_i^i = 0$
- **► anisotropic stress tensor:** Π_{ij} ~ $(1-2\xi)\partial_i\chi\partial_i\chi 2\xi\chi\partial_i\partial_i\chi + \xi\chi^2G_{ii}$
- ▶ Evolution equation: $h_{\mathbf{k}}^{\lambda''}+2\frac{a'}{a}$ $\frac{a^{\prime}}{a}h_{\mathbf{k}}^{\lambda\prime}+k^2h_{\mathbf{k}}^{\lambda}=\frac{2}{M_{pl}^2}e_{\lambda}^{ij}$ $\lambda^{ij}_\lambda(k)P^{lm}_{ij}(\hat k) \, {\mathcal{T}}_{lm}(k,\eta), ~~ P^{lm}_{ij}(\hat k) \rightarrow$ transverse-traceless projector

 \rightarrow [outline of evolution Equation](#page-35-1)

Defining secondary tensor power spectrum in presence of scalar field source

• Tensor power spectrum: $\mathcal{P}_{\text{T}}(k, \eta) = 4 \frac{k^3}{2 \pi^3}$ $\frac{k^3}{2\pi^2} |h_{\mathbf{k}}(\eta)|^2$, $h_{\mathbf{k}}(\eta) =$ $h_{\bf k}^{\rm vac}+\frac{2e^{ij}({\bf k})}{M_{pl}^2}$ $\frac{\partial^{g}(\mathbf{k})}{\partial M_{pl}^{2}}\int d\eta_{1} \mathcal{G}_{k}(\eta,\eta_{1})\Pi_{ij}^{\mathrm{TT}}(\mathbf{k},\eta_{1})$

Defining secondary tensor power spectrum in presence of scalar field source

• Tensor power spectrum: $\mathcal{P}_{\text{T}}(k, \eta) = 4 \frac{k^3}{2 \pi^3}$ $\frac{k^3}{2\pi^2} |h_{\mathbf{k}}(\eta)|^2$, $h_{\mathbf{k}}(\eta) =$ $h_{\bf k}^{\rm vac}+\frac{2e^{ij}({\bf k})}{M_{pl}^2}$ $\frac{\partial^{g}(\mathbf{k})}{\partial M_{pl}^{2}}\int d\eta_{1} \mathcal{G}_{k}(\eta,\eta_{1})\Pi_{ij}^{\mathrm{TT}}(\mathbf{k},\eta_{1})$

▶ Secondary tensor power spectrum: $\mathcal{P}^{\sec}_{\text{T}}(\textit{k},\eta_{\text{re}}) \propto \frac{1}{M_{\text{pl}}^{4}} \left(\int_{\textit{x}_{\text{e}}}^{\textit{x}_{\text{re}}} d\textit{x}_{\text{1}} \frac{\mathcal{G}^{\text{re}}_{\textit{k}}(\textit{x}_{\text{re}},\textit{x}_{\text{1}})}{a^{2}(\textit{x}_{\text{1}})} \right.$ $a^2(x_1)$ $\left.\rule{0pt}{10pt}\right)^2 \times \int_{k_{\rm min}}^{k_{\rm end}}$ dq $\frac{dq}{k}\int_{-1}^{1}d\gamma(1-\gamma^2)^2$ \times $(q/k)^3 \mathcal{P}_X(q,\eta_1) \mathcal{P}_X(|\mathbf{k}-\mathbf{q}|\eta_1)$ $\frac{(q,\eta_1)\mathcal{P}_X(|\mathbf{k}-\mathbf{q}|\eta_1)}{|1-q/k|^3},\ \ \ x=k\eta,\ \ \cos\!\gamma=\hat{k}.\hat{q}$

For $w_{\phi} > 1/3, \xi > 3/16$

$$
\mathcal{P}_{\text{T}}^{\text{sec}}(k < k_{\text{re}}, \eta_{\text{re}}) \propto \left(\frac{k_{\text{end}}}{k_{\text{re}}}\right)^{4-2\delta} \left(\frac{k}{k_{\text{end}}}\right)^{4(2-\nu_2)}; \delta = 4/(1+3w_{\phi}) \quad (3)
$$
\n
$$
\mathcal{P}_{\text{T}}^{\text{sec}}(k > k_{\text{re}}, \eta_{\text{re}}) \propto \left(\frac{k_{\text{re}}}{k_{\text{end}}}\right)^{\delta} \left(\frac{k}{k_{\text{end}}}\right)^{4+\delta-4\nu_2} \quad (4)
$$

Defining Gravitational wave(GW) energy spectrum

- ▶ GW energy spectrum: $\Omega_{\rm gw}(k,\eta)= (\Omega_{\rm gw}^{\rm pri}+\Omega_{\rm gw}^{\rm sec})= \frac{(1+k^2/k_{\rm re}^2)}{24} (\mathcal{P}_{\rm T}^{\rm pri})$ $T_{\rm T}^{\rm pri}(k,\eta_{\rm re})+ \mathcal{P}^{\rm sec}_{\rm T}(k,\eta_{\rm re}))$
- \blacktriangleright Energy spectrum for today: $\Omega_{\rm gw}(k) h^2 \approx \left(\frac{g_{r,0}}{g_{r,\rm eq}}\right)^{1/3} \Omega_R h^2 \Omega_{\rm gw}(k,\eta)$, $\Omega_R h^2 = 4.3 \times 10^{-5}$

For $w_{\phi} > 1/3, \xi > 3/16$

$$
\Omega_{\rm gw}^{\rm pri}(k < k_{\rm re})h^2 \propto (k/k_{\rm re})^0 \tag{5}
$$
\n
$$
\Omega_{\rm gw}^{\rm pri}(k > k_{\rm re})h^2 \propto (k_{\rm end}/k_{\rm re})^{n_{\rm w}} (k/k_{\rm end})^{n_{\rm w}}; n_{\rm w} = 2(3w_{\phi} - 1)/(1 + 3w_{\phi}) \tag{6}
$$
\n
$$
\Omega_{\rm gw}^{\rm sec}(k < k_{\rm re})h^2 \propto (k_{\rm end}/k_{\rm re})^{4-2\delta} (k/k_{\rm end})^{2(4-2\nu_2)} \tag{7}
$$

$$
\Omega_{\rm gw}^{\rm sec}(k>k_{\rm re})h^2 \propto (k_{\rm end}/k_{\rm re})^{2-\delta} (k/k_{\rm end})^{6+\delta-4\nu_2}
$$
\n(8)

¹ A.chakraborty, S.Maiti, and D.Maity [arxiv: 2408.07767] Ayan Chakraborty (IITG) Probing non-minimal coupling through super-horizon instants 2024 15

GW spectrum for varying ξ , T_{re} and inflationary energy scale(H_{end})

Constraining ξ through tensor-to-scalar ratio($r_{0.05}$) and ΔN_{eff} (for the scalar field)

For
$$
w_{\phi} > 1/3
$$
, in the regime $k < k_{\text{re}}$; $r_{0.05} \propto$

$$
\left(\frac{90H_{\text{end}}^2 M_{\text{per}}^2}{\pi^2 g_{\text{re}} T_{\text{re}}^4}\right)^{\frac{2(3w_{\phi}-1)}{3(1+w_{\phi})}} \left(\frac{k_*}{k_{\text{end}}}\right)^{4(2-\nu_2)} \leq 0.036
$$
; $(k_*/a_0) = 0.05 \text{ Mpc}^{-1}$

Constraining ξ through tensor-to-scalar ratio($r_{0.05}$) and ΔN_{eff} (for the scalar field)

For
$$
w_{\phi} > 1/3
$$
, in the regime $k < k_{\text{re}}$; $r_{0.05} \propto$

$$
\left(\frac{90H_{\text{end}}^2 M_{\text{pl}}^2}{\pi^2 g_{\text{re}} T_{\text{re}}^4}\right)^{\frac{2(3w_{\phi}-1)}{3(1+w_{\phi})}} \left(\frac{k_*}{k_{\text{end}}}\right)^{4(2-\nu_2)} \leq 0.036
$$
; $(k_*/a_0) = 0.05 \text{ Mpc}^{-1}$

▶ This massless scalar, possible candidate for dark radiation, solely contributes to $\Delta N_{\text{eff}} \rightarrow$ $\left(\frac{g_{r,0}}{g_{r,\text{eq}}}\right)^{1/3}\Omega_{\rm R}h^2\,\Omega_\chi(\eta_{\text{re}})\simeq1.6\times10^{-6}\left(\frac{\Delta N_{\text{eff}}}{0.284}\right)$

Ayan Chakraborty (IITG) Probing non-minimal coupling through su and secondary 2024 17

Contribution of GWs to $\Delta N_{\rm eff}$

▶ If GWs(PGW+SGW) solely contributes to $\Delta N_{\rm eff}$ then $\Omega_{\rm gw} h^2 \leq 1.6 \times 10^{-6} \left(\frac{\Delta N_{\rm eff}}{0.284} \right)$, $\Omega_{\rm gw} h^2 = \int_{k_{\rm min}}^{k_{\rm end}}$ $\frac{dk}{k} \Omega_{\rm{gw}}(k)h^2$

¹ S. Maiti, D. Maity, and L. Sriramkumar, (2024)[arXiV:2401.01864[gr-qc]] Ayan Chakraborty (IITG) Probing non-minimal coupling through super-horizon instants 2024 18

Contribution of GWs to $\Delta N_{\rm eff}$

- ▶ If GWs(PGW+SGW) solely contributes to $\Delta N_{\rm eff}$ then $\Omega_{\rm gw} h^2 \leq 1.6 \times 10^{-6} \left(\frac{\Delta N_{\rm eff}}{0.284} \right)$, $\Omega_{\rm gw} h^2 = \int_{k_{\rm min}}^{k_{\rm end}}$ $\frac{dk}{k} \Omega_{\rm{gw}}(k)h^2$
- \blacktriangleright Minimum bound on T_{ref} avoiding overproduction of extra degrees of freedom):

5. Maiti, D. Maity, and L. Sriramkumar, (2024)[arXiV:2401.01864[gr-qc]]

Ayan Chakraborty (IITG) Probing non-minimal coupling through su and sector instants and secondary in the second

Important outcomes

Post-inflationary instability effect is dominant for higher EoS $w_{\phi} > 1/3$. The longer the wavelength, the more the enhancement owing to prolonged instability for a larger coupling strength ξ .

- Post-inflationary instability effect is dominant for higher EoS $w_{\phi} > 1/3$. The longer the wavelength, the more the enhancement owing to prolonged instability for a larger coupling strength ξ .
- For $w_{\phi} > 1/3$, significant IR instability beyond a certain large ξ leaves a visible imprint on the SGW spectrum overcoming the PGW strength at the low and intermediate frequency ranges.
- Post-inflationary instability effect is dominant for higher EoS $w_{\phi} > 1/3$. The longer the wavelength, the more the enhancement owing to prolonged instability for a larger coupling strength ξ .
- For $w_{\phi} > 1/3$, significant IR instability beyond a certain large ξ leaves a visible imprint on the SGW spectrum overcoming the PGW strength at the low and intermediate frequency ranges.
- \bullet Combining two strong observational bounds, $r_{0.05}$ and ΔN_{eff} , to prevent the overproduction of tensor fluctuations at the CMB scale and the overproduction of extra relativistic degrees of freedom, we have found a tight constraint on coupling strength. We find that $\xi_{\text{max}} \leq 4$ for any $w_{\phi} > 1/2$ for a wide range of reheating temperatures. Unlike $w_{\phi} > 1/3$, for $w_{\phi} < 1/3$, we put lower bound on ξ. For $w_{\phi} = 0$, we find the lower bound $\xi_{\text{min}} \gtrsim 0.02$.

Thank you!

Bogoliubov coefficients (α_k, β_k): Making the adiabatic vacuum solutions $X_k^{\rm (inf)}$ $\chi_k^{\text{(inf)}}$ and $X_k^{\text{(reh)}}$ $\kappa_k^{\text{(ren)}}$, and their first derivatives continuous at the junction $\eta = \eta_{\text{end}}$, we compute the Bogoliubov coefficients as follows 1 :

$$
\alpha_k = i \left(X_k^{(\text{inf})'}(\eta_{\text{end}}) X_k^{(\text{reh})^*}(\eta_{\text{end}}) - X_k^{(\text{inf})}(\eta_{\text{end}}) X_k^{(\text{reh})^*}(\eta_{\text{end}}) \right)
$$

$$
\beta_k = -i \left(X_k^{(\text{inf})'}(\eta_{\text{end}}) X_k^{(\text{reh})}(\eta_{\text{end}}) - X_k^{(\text{reh})'}(\eta_{\text{end}}) X_k^{(\text{ref})}(\eta_{\text{end}}) \right)
$$
(9)

where (′) denotes the derivative with respect to conformal time.

 $¹$ M. R. de Garcia Maia Phys. Rev. D 48, 647 (1993)</sup>

Ayan Chakraborty (IITG) Probing non-minimal coupling through super-horizon instants and secondary and secondary 27

Bogoliubov coefficients (α_k, β_k): Making the adiabatic vacuum solutions $X_k^{\rm (inf)}$ $\chi_k^{\text{(inf)}}$ and $X_k^{\text{(reh)}}$ $\kappa_k^{\text{(ren)}}$, and their first derivatives continuous at the junction $\eta = \eta_{\text{end}}$, we compute the Bogoliubov coefficients as follows 2 :

$$
\alpha_k = i \left(X_k^{(\text{inf})'} (\eta_{\text{end}}) X_k^{(\text{reh})^*} (\eta_{\text{end}}) - X_k^{(\text{inf})} (\eta_{\text{end}}) X_k^{(\text{reh})^{*'}} (\eta_{\text{end}}) \right)
$$

$$
\beta_k = -i \left(X_k^{(\text{inf})'} (\eta_{\text{end}}) X_k^{(\text{reh})} (\eta_{\text{end}}) - X_k^{(\text{reh})'} (\eta_{\text{end}}) X_k^{(\text{inf})} (\eta_{\text{end}}) \right)
$$
(10)

where (') denotes the derivative with respect to conformal time.

 2 M. R. de Garcia Maia Phys. Rev. D 48, 647 (1993)

▶ Action with anisotropic stress: $S_{GW} = \int dx^4 \sqrt{-g} \left[-\frac{g^{\mu\nu}}{64\pi} \right]$ $\frac{g^{\mu\nu}}{64\pi G}\partial_\mu h_{ij}\partial_\nu h^{ij} + \frac{1}{2}\Pi^{ij}h_{ij}\Bigl]$ ▶ Fourier decomposition: $h_{ij}(\eta, \mathsf{x}) = \sum_{\lambda = (+, \times)} \int \frac{d^3 \mathsf{k}}{(2 \pi)^3}$ $\frac{d^3\mathbf{k}}{(2\pi)^{3/2}}e_{ij}^{\lambda}(\mathbf{k})h^{\lambda}_{\mathbf{k}}(\eta)\mathrm{e}^{i\mathbf{k}\cdot\mathbf{x}},\;\;e_{ij}^{\lambda}(\mathbf{k})\rightarrow \text{polarization}$ tensor