

Review of Dark Matter Tools

Paris Astroparticle Symposium

November 2024

Andreas Goudelis LPC – Clermont Ferrand

Introductory comments

Every review talk needs a disclaimer...

 \cdot There are *many* dark matter – related tools available in the community!

 \cdot I have not used all of them, let alone all of their functionalities.

· I apologize in advance if I don't mention or misrepresent your favourite tool. Cf also reviews on DM Tools at TOOLS2020, 2022

 \cdot Most DM codes evolve constantly (sometimes even silently), not obvious to keep up with new functionalities/features. Ultimately, one *must* read the manuals.

The fact that we've reached a level at which it's actually hard to give a review talk on DM tools is a good thing

Which are the public dark matter tools?

For the sake of the presentation, let's split them into two categories:

Tools that compute the DM relic abundance (but which may also serve other purposes!)

 \cdot micrOMEGAs: Generic BSM models.

· DarkSUSY: Generic BSM models.

 \cdot MadDM: Generic BSM models.

• Dark Pack: Evolutions of Superiso Relic, Generic BSM models.

NB: All of these codes also perform (at least) the most standard calculations for direct/indirect detection.

Tools that don't compute the DM relic abundance

(and which definitely serve other purposes!)

• Direct detection: DirectDM, RunDM, RAPIDD, DaMaSCUS, DDCalc...

EFT matching, RGE evolution, scattering in the earth...

 Indirect detection: GALPROP, DRAGON, USINE, CLUMPY, PPPC4DMID, HDMSpectra...
 Cosmic ray propagation,

Cosmic ray propagation, annihilation spectra...

· Additional functionalities: DarkBit, DarkHistory...

NB: Some of these codes are/can be linked to relic abundance calculation codes.

General workflow of DM tools

DarkSUSY

https://darksusy.hepforge.org/

A Fortran code to compute numerous dark matter observables for different dark matter candidates (current version: v6).

 \cdot Underwent *major* upgrade ~6 years ago, no longer SUSY-specific.

Freeze-out, direct detection (incl. upscattering), indirect detection (under different astro assumptions).

 \cdot Possibility to link to other, model-specific packages.

DarkSUSY

https://darksusy.hepforge.org/

A Fortran code to compute numerous dark matter observables for different dark matter candidates (current version: v6).

- \cdot Underwent *major* upgrade ~6 years ago, no longer SUSY-specific.
- Freeze-out, direct detection (incl. upscattering), indirect detection (under different astro assumptions).
- · Possibility to link to other, modelspecific packages.

Highlights:

- · Very modular.
- \cdot Dark freeze-out computations w/ different sector temperatures.
- \cdot Possibility to account for late kinetic decoupling, Sommerfeld enhancement.
- \cdot Possibility to compute self-interaction effects.

MadDM

A Fortran/Python code to compute dark matter observables for generic dark matter candidates (current version: v3).

MadDM

A Fortran/Python code to compute dark matter observables for generic dark matter candidates (current version: v3).

Highlights:

- \cdot Handles generic extensions of the SM, no need to compute cross-sections by hand.
- \cdot Relies on MG5_AMC, extensively used in collider physics.
- \cdot Readily linked with numerous HEP packages.
- \cdot Possibility to compute 2 \rightarrow n/loop-induced processes for ID via MadLoop.

micrOMEGAs

https://lapth.cnrs.fr/micromegas/

A C/Fortran code to compute dark matter observables for generic dark matter candidates (current version: v6). For any BSM model, the code can:

 \cdot Figure out which processes are relevant for the evolution of the freeze-out/freeze-in dark matter cosmic abundance.

 \cdot Compute the relevant matrix elements.

Based on CalcHEP. By default tree-level 1/2 $\leftrightarrow\,$ 2, possibility for some 2 \rightarrow 3/4 . Possibility to replace <0v> with own expression.

- \cdot Solve the necessary Boltzmann equations.
- \cdot Compute additional observables, compare to EXP limits, link to other packages.

micrOMEGAs

https://lapth.cnrs.fr/micromegas/

A C/Fortran code to compute dark matter observables for generic dark matter candidates (current version: v6). For any BSM model, the code can:

 \cdot Figure out which processes are relevant for the evolution of the freeze-out/freeze-in dark matter cosmic abundance.

 \cdot Compute the relevant matrix elements.

Based on CalcHEP. By default tree-level 1/2 $\leftrightarrow\,$ 2, possibility for some 2 \rightarrow 3/4 . Possibility to replace <0v> with own expression.

 \cdot Solve the necessary Boltzmann equations.

 \cdot Compute additional observables, compare to EXP limits, link to other packages.

micrOMEGAs

https://lapth.cnrs.fr/micromegas/

A C/Fortran code to compute dark matter observables for generic dark matter candidates (current version: v6). For any BSM model, the code can:

 \cdot Figure out which processes are relevant for the evolution of the freeze-out/freeze-in dark matter cosmic abundance.

 \cdot Compute the relevant matrix elements.

Based on CalcHEP. By default tree-level 1/2 $\leftrightarrow\,$ 2, possibility for some 2 \rightarrow 3/4 . Possibility to replace <0v> with own expression.

- \cdot Solve the necessary Boltzmann equations.
- \cdot Compute additional observables, compare to EXP limits, link to other packages.

Highlights:

- \cdot Can handle multi-component dark matter models.
- \cdot Includes semi-annihilations, conversion-driven freeze-out.
- \cdot Freeze-in (incl. backreactions).
- \cdot Readily linked with numerous HEP packages.

Development of micrOMEGAs

MicrOMEGAs is a numerical code for the calculation of dark matter properties

micrOMEGAs: A program for calculating the relic	Neutralino DM relic density in the MSSM.
density in the MSSM	Based on CompHEP for ME calculation.
G. Bélanger ¹ , F. Boudjema ¹ , A. Pukhov ² , A. Semenov ¹	arXiv:hep-ph/0112278
 micrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model . G. Bélanger¹, F. Boudjema¹, A. Pukhov², A. Semenov³ 	Freeze-out calculation of DM relic density in generic extensions of the SM. CalcHEP. arXiv:hep-ph/0607059
micrOMEGAs_3 : a program for calculating dark	Asymmetric DM, semi-annihilations,
matter observables	generalized thermodynamics, DD/ID/LHC.
G. Bélanger ¹ , F. Boudjema ¹ , A. Pukhov ² , A. Semenov ³	arXiv:1305.0237
micrOMEGAs4.1: two dark matter candidates G. Bélanger ¹ , F. Boudjema ¹ , A. Pukhov ² , A. Semenov ³	Two generic frozen-out dark matter components. arXiv:1407.6129
micrOMEGAs5.0 : freeze-in G. Bélanger ^{1†} , F. Boudjema ^{1‡} , A. Goudelis ^{2§} , A. Pukhov ^{3¶} , B. Zaldivar ^{1††}	Incorporation of freeze-in dark matter production mechanism (one-component). arXiv:1801.03509
micrOMEGAs 6.0: N-component dark matter	Arbitrary number of (frozen in/out) dark
G. Alguero ¹ , G. Bélanger ² , F. Boudjema ² , S. Chakraborti ³ ,	matter components.
A. Goudelis ⁴ , S. Kraml ¹ , A. Mjallal ² , A. Pukhov ⁵	arXiv:2312.14894

+ intermediate versions. Until 2013, the *only* DM code to handle generic SM extensions.

What is new in MO6 ?

Numerous new features have been implemented in the latest version :

 \cdot Major upgrade : possibility to compute the DM cosmic abundance in models with multiple WIMP+FIMP dark matter candidates + consistent computation of relevant experimental constraints.

 \cdot Major upgrade : inclusion of conversion-driven freeze-out ("co-scattering") and decay terms.

 \cdot Possibility to define (and, partly, check) which sets of particles are in thermal equilibrium.

- \cdot Possibility to include 2 \rightarrow 3 and 2 \rightarrow 4 processes in single-component DM models.
- \cdot Improvements in freeze-in computations.
- \cdot Additional functionalities for direct/indirect detection.

Multi-component dark matter : strategy

Types of models handled in MO : one (or more) discrete symmetries Z_i are imposed at the Lagrangian. Different (sets of) particles may transform differently under the direct product $Z = Z_1 \otimes Z_2 \otimes ... \otimes Z_N$ of these symmetries. We divide the model content in *sectors*.

Multi-WIMP case

Any DS may (or may not) contain a dark matter candidate. The evolution of the μ -th candidate's abundance as a function of the entropy density follows :

$$3H\frac{dY_{\mu}}{d\mathfrak{s}} = \sum_{\alpha \leq \beta; \ \gamma \leq \delta} Y_{\alpha} Y_{\beta} C_{\alpha\beta} \langle v\sigma_{\alpha\beta\gamma\delta} \rangle (\delta_{\mu\alpha} + \delta_{\mu\beta} - \delta_{\mu\gamma} - \delta_{\mu\delta})$$

where:

$$\left| \begin{array}{c} \langle v\sigma_{\alpha\beta\gamma\delta} \rangle = \frac{1}{C_{\alpha\beta}\bar{n}_{\alpha}(T)\bar{n}_{\beta}(T)} \sum_{\substack{a \in \alpha, b \in \beta, c \in \gamma, d \in \delta \\ \text{if}(\alpha=\beta)a \leq b; \text{ if}(\gamma=\delta)c \leq d}} \bar{N}_{a,b\to c,d} \\ \bar{N}_{a,b\to c,d} = \frac{Tg_ag_b}{8\pi^4} \int \sqrt{s}p_{ab}^2(s)K_1(\frac{\sqrt{s}}{T})C_{ab}\sigma_{a,b\to c,d}(s)ds \end{array} \right|$$

Multi-WIMP case

177

Any DS may (or may not) contain a dark matter candidate. The evolution of the μ -th candidate's abundance as a function of the entropy density follows :

$$3H\frac{dY_{\mu}}{d\mathfrak{s}} = \sum_{\alpha \leq \beta; \ \gamma \leq \delta} Y_{\alpha} Y_{\beta} C_{\alpha\beta} \langle v\sigma_{\alpha\beta\gamma\delta} \rangle (\delta_{\mu\alpha} + \delta_{\mu\beta} - \delta_{\mu\gamma} - \delta_{\mu\delta})$$

where: $\left| \begin{array}{c} \langle v\sigma_{\alpha\beta\gamma\delta} \rangle = \frac{1}{C_{\alpha\beta}\bar{n}_{\alpha}(T)\bar{n}_{\beta}(T)} \sum_{\substack{a \in \alpha, b \in \beta, c \in \gamma, d \in \delta \\ \text{if}(\alpha=\beta)a \leq b; \text{ if}(\gamma=\delta)c \leq d}} \bar{N}_{a,b \to c,d} \right| \\ \bar{N}_{a,b \to c,d} = \frac{Tg_ag_b}{8\pi^4} \int \sqrt{s}p_{ab}^2(s)K_1(\frac{\sqrt{s}}{T})C_{ab}\sigma_{a,b \to c,d}(s)ds$

If some particle species in a DS decay slowly, we get additional terms of the type :

$$\frac{1}{\mathfrak{s}^2(T)} \sum_{\alpha; \ \gamma \le \delta} \left(\frac{Y_\alpha}{\bar{Y}_\alpha} - \frac{Y_\beta}{\bar{Y}_\beta} \frac{Y_\gamma}{\bar{Y}_\gamma} \right) \left(\delta_{\mu\alpha} - \delta_{\mu\beta} - \delta_{\mu\gamma} \right) \sum_{a \in \alpha, c \in \beta, d \in \gamma} \bar{N}_{a \to c, d}$$

where: $\bar{N}_{a\to c,d} = \frac{Tg_a}{2\pi^2} m_a^2 \Gamma^0(a\to c,d) K_1\left(\frac{m_a}{T}\right)$

Including co-scattering, freeze-in

Co-scattering corresponds to processes of the type $\mu + 0 \rightarrow \nu + 0$. It turns out that these contributions enter the Boltzman eqs. similarly to decay terms $\mu \rightarrow \nu + 0$

$$3H\frac{dY_{\mu}}{d\mathfrak{s}} \approx \left(Y_{\mu} - Y_{\nu}\frac{\bar{Y}_{\mu}}{\bar{Y}_{\nu}}\right)\Gamma_{\mu\to\nu}$$

where:

$$\Gamma_{\mu \to \nu} = Y_0 \langle \sigma_{\mu 0 \nu 0} v \rangle \langle T \rangle + \frac{\sum_{a \in \mu, c \in \nu} g_a m_a^2 \Gamma^0(a \to c, 0) K_1\left(\frac{m_a}{T}\right) + \sum_{a \in \nu, c \in \mu} g_a m_a^2 \Gamma^0(a \to c, 0) K_1\left(\frac{m_a}{T}\right)}{\sum_{a \in \mu} g_a m_a^2 K_2\left(\frac{m_a}{T}\right)}$$

can be seen as an effective width between sectors μ and ν .

Freeze-in can also be implemented through the same set of equations, but setting the initial DM abundance to zero as usual.

Important difference wrt single-component case: DM annihilations are taken into account.
 NB: Kinetic equilibrium is assumed even for FIMPs, otherwise need to solve un-integrated Boltzmann egs!

Validation and example results

The code was validated using different models as examples :

- \cdot Singlet scalar (sanity checks for single-component DM, 1 WIMP or 1 FIMP).
- · Z5M (two singlets w/ Z_5 symmetry, 2 WIMPs or 1 WIMP + 1 FIMP).
- · Z4IDSM (Inert Doublet plus Singlet w/ Z_4 symmetry, 1 WIMP + 1 FIMP).

Two examples from the Z5M :

Excellent agreement w/ previous versions until decays become relevant.

Another application: FI at strong coupling

Usually, relic abundance calculations are performed assuming T_R to be much larger than all mass scales in the theory. However, this is an arbitrary assumption.

· Consider the singlet scalar model : $-\Delta \mathcal{L}_{scal} = \frac{1}{2} \lambda_{hs} H^{\dagger} H s^2$

· If $T_R < m_s \rightarrow$ Production becomes Boltzmann-suppressed \rightarrow Larger couplings required for successful freeze-in.

 \cdot Backreactions can become relevant \rightarrow Can be computed with micrOMEGAs 6.

Another application: FI at strong coupling

Usually, relic abundance calculations are performed assuming T_R to be much larger than all mass scales in the theory. However, this is an arbitrary assumption.

· Consider the singlet scalar model : $-\Delta \mathcal{L}_{scal} = \frac{1}{2} \lambda_{hs} H^{\dagger} H s^2$

· If $T_R < m_s \rightarrow$ Production becomes Boltzmann-suppressed \rightarrow Larger couplings required for successful freeze-in.

 \cdot Backreactions can become relevant \rightarrow Can be computed with micrOMEGAs 6.

 Smooth passage from freeze-in to freeze-out, as backreactions become more important.

 \cdot New parameter space regions open up, which re-motivates old (and new) searches.

Traditional dark matter searches remain relevant

Issues with *t*-channels : the problems

Although in principle quite straightforward, processes involving particle exchange in the *t*-channel may present some peculiarities :

Spin-1 particle exchange leads to constant σ at high temperatures $\rightarrow Y_{\text{DM}} \sim T_{\text{R}}$ even for renormalizable models.

Issue only appears in FI

If a stable particle is exchanged in the t-channel, σ diverges as the particle becomes on-shell.

Issue appears both in FI and in FO

Both problems appear due to the utilisation of zero-temperature, in-vacuum QFT. Physically, they are *ficticious*.

Issues with *t*-channels : the problems

Although in principle quite straightforward, processes involving particle exchange in the *t*-channel may present some peculiarities :

Spin-1 particle exchange leads to constant σ at high temperatures $\rightarrow Y_{\text{DM}} \sim T_{\text{R}}$ even for renormalizable models.

Issue only appears in FI

If a stable particle is exchanged in the t-channel, σ diverges as the particle becomes on-shell.

Issue appears both in FI and in FO

Both problems appear due to the utilisation of zero-temperature, in-vacuum QFT. Physically, they are *ficticious*.

In particular, *in a medium*, at finite temperature :

- The vector mass receives a *T*-dependent contribution that scales as $M^2 \sim T^2$.
- \cdot Every particle (even a stable one) has a finite absorption probability ("width").

Issues with *t*-channels : solutions

Computing full-blown thermal corrections to masses/widths is beyond the scope of micrOMEGAs.

NB: We *cannot* simply replace T-dependent masses (gauge invariance).

Issues with *t*-channels : solutions

Computing full-blown thermal corrections to masses/widths is beyond the scope of micrOMEGAs. Matrix elements calculated at *tree-level*

NB: We *cannot* simply replace T-dependent masses (gauge invariance).

Observation : consider $e^+ e \rightarrow \nu_e \overline{\nu_e}$ and compute the integrated cross-section with a cut *c* on the scattering angle

$$\sigma(\sqrt{s}, M_W, c) = 4\hat{\sigma}_{e\nu_e} \left(\frac{1}{2\mu^2 + c} + \log\left(\frac{2\mu^2 + c}{2}\right) + \mu^2 \log\left(\frac{2\mu^2 + c}{2}\right) + 1 - c + \frac{c^2}{4(-2+c-2\mu^2)} + \frac{c(c-4)}{4(c+2\mu^2)} - (1+\mu^2)\log\left(1+\mu^2 - c/2\right)\right)$$

Where $\mu^2 = M_W^2/s$, $\hat{\sigma}_{e\nu_e} = \pi \alpha^2/(8s_W^4s)$ and $\{\mu, c\}$ enter both singularities through the same combination $2\mu^2 + c$

The effect of a *T*-dependent mass can be captured by a zero-temperature calculation with a *T*-dependent cut on the scattering angle (or the p_T).

In practice: user-defined $p_{\rm T}$ cuts for all relevant particles

Issues with *t*-channels : solutions

Computing full-blown thermal corrections to masses/widths is beyond the scope of micrOMEGAs. Matrix elements calculated at *tree-level*

NB: We *cannot* simply replace T-dependent masses (gauge invariance).

Observation : consider $e^+ e \rightarrow \nu_e \overline{\nu}_e$ and compute the integrated cross-section with a cut *c* on the scattering angle

$$\sigma(\sqrt{s}, M_W, c) = 4\hat{\sigma}_{e\nu_e} \left(\frac{1}{2\mu^2 + c} + \log\left(\frac{2\mu^2 + c}{2}\right) + \mu^2 \log\left(\frac{2\mu^2 + c}{2}\right) + 1 - c + \frac{c^2}{4(-2+c-2\mu^2)} + \frac{c(c-4)}{4(c+2\mu^2)} - (1+\mu^2)\log\left(1+\mu^2 - c/2\right)\right)$$

Where $\mu^2 = M_W^2/s$, $\hat{\sigma}_{e\nu_e} = \pi \alpha^2/(8s_W^4s)$ and $\{\mu, c\}$ enter both singularities through the same combination $2\mu^2 + c$

The effect of a *T*-dependent mass can be captured by a zero-temperature calculation with a *T*-dependent cut on the scattering angle (or the p_T).

In practice: user-defined $p_{\rm T}$ cuts for all relevant particles

For stable particles: introduce a small width \sim M/100 for *t*-channel particles.

Andreas Goudelis

Improvements for other observables

cf also Bryan's talk

\cdot Direct detection:

In general multi-component models, one cannot naïvely impose DD limits: simple rescaling by the fraction of each component is not enough.

In MO6 a function is provided in order to compute whether a model is excluded or not by the leading DD experiments.

• Indirect detection:

Consistent tabulation of of DM annihilation photon spectra also for m_{DM} < 2 GeV.

In MO6 the gamma-ray tables have been updated/improved to include annihilations into light leptons, pions, Kaons.

+ new Planck CMB constraints from electron/photon injection.

Structure formation:

Free-streaming length of DM particles through:

$$\lambda_{FS} = \int_{T_2}^{T_1} \left(1 + \left(\frac{a(T)m}{a(T_1)p} \right)^2 \right)^{-\frac{1}{2}} \frac{dT}{a(T)\overline{H}(T)T}$$

Summary and outlook

 \cdot Dark matter tools have evolved significantly during the last few years, and they continue doing so.

• They are now capable of dealing with issues such as: generalized cosmological settings, self-interactions, loop-induced processes, alternative dark matter generations mechanisms, generic dark matter models.

 \cdot Which tool you should use really depends on what exactly it is that you're trying to do. Apart from a common core, each code may offer specific functionalities which might be best suited for your purposes.

 Specialized tasks may require specialized codes. Each code has its limitations! *cf* codes that don't compute the DM abunance

 \cdot All of these tools have been developed by people from *within* our community and they evolve thanks to the feedback *from* the community.

• Future directions: <u>DM production during/due to inflaton decay</u>, phase transitions, unintegrated Boltzmann equations...

► With N. Bernal