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Usual (flat-space) QFT path

Quantum Mechanics + Poincaré
Invariance, locality and unitarity
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Spinor helicity formalism

Consider massless momentum p#*, such thatp2 =0
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Helicity spinors associated with momentum p*



Spinor helicity formalism

If you think you've never seen helicity spinors...

Here 1, is a 4-component Dirac spinor describing polarization of an external fermion
entering a Feynman diagram
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Spinor helicity formalism

pioc = Ai4;
The decomposition of momentum into spinors is not unique because the transformation

—1 - "
A = 2 A A = 74,

does not change the momentum pl./“‘

Transformation corresponds to the little group associated with momentum pl.”

S-matrix elements or amplitude transform under the little group

%[1h12h2. . nhn] N Zl2h1222h2. . -Z,fhn%[lhlzhz' . nhn]

Weights of amplitude under little group transformations depend on particles' helicities



Spinor helicity formalism
P10 = /1151 P20 = /12/’52

Lorentz algebra is equivalent to SU(2) X SU(2)

Spinors 4,, transform in the spinor representation under the first SU(2) factor

Spinors Zia transform in the spinor representation under the second SU(2) factor

Lorentz invariants: (12) = Eaﬂ’llﬁ’ba = Al Ay

[12] = edﬂfld/fzﬂ = 1,448

But contracting twiddled and untwiddled spinors is illegal ! /110‘)72&

Note also that (i) = — (ji)  [iil=—1[jill  which implies Jj) =Lij1=0

Momentum contractions can be traded for spinor contractions
2p1py = Tr[piopy6) = Ay Ay pAo25 = (A hy) = (21)[12]
o =1,-06) [ps)fr=iPrr 2% =¥y



Spinor helicity formalism

Consider massive momentum p*, such thatp2 = m?

Massive spinors )(J and )’(’J are defined by the decomposition
2
— J 5 Jo, st ~ ~K _ oK
po = Z,){ Xj X Xg=mox  Jy X =mo

Massive spinor transform under SU(2) little gauge group
= Qe -t X1 — QjK)(K Xj = QjK)?K

Massive
Spin-S

/ particle

M5 ] = Qs 1R )

Little group indices fully symmetrized






On-shell 3-point kinematics

P2 hz

P1 hl P3 h3

Assuming all particles are on-shell, incoming and massless

prt+p,+p3;=0 P12:P22:P32:O

It follows that all Mandelstam invariant vanish in this case

2pip;=(pi+p)*=pi =0 ijk€L.3 i#j#k



On-shell 3-point kinematics

P2 hz

pr+p+p;=0 pi=p,=p;=0

P1 hl P3 h3

Still, using helicity spinors, there exist Lorentz invariants for this kinematics

Holomorphic kinematics Anti-holomorphic kinematics
Jkl=0  (jk) #0 Gky=0  [jk]#0

- k) - k

PRl i£j#k h=—T ik

L (k) [ik]



On-shell 3-point amplitudes

2

pr+p+p;=0 P12=P22=P3?=0

) / \h3

For a given helicity configuration, for H and AH kinematics each,
there exist a single possible on-shell 3-point amplitude
consistent with Lorentz invariance and little group scaling

H: #[1M2R315] = g(12)s=m=(23yn=h=hs(31 yh=hs=h,
AH : %1h12h23h3 — g[12]h1+h2—h3[23]h2+h3—h1[31]h3+h1—h2




On-shell 3-point amplitudes

%)

P1 hy

h,
prtp,+p3;=0 P12=P22=P32=0

H: .#[1M2"3%] = g(12)=m=ha(23)ym=hhs(31 yha=hs=h,
AH @ [17M2723"%] = g12]" - h23) w3 1]t =hs

P3N\ 13

For 3 scalars, the only possible amplitude is a constant independent of kinematics

A[1929391 = kA

K\

This corresponds to a Lagrangian with an interaction term £ D —'qb3



On-shell 3-point amplitudes

2
prtp,+p3;=0 P12=P22=P32=0

H: #[1"203"] = g(12)h—ha(23yn—haha(31yha—ha=h

AH :  [1M2723%] = g12] /s3]t w3 )t =h,
D1 h A2

For 2 fermions and one scalar:

%[1—1/22—1/230] — y<12>
%[1+1/22+1/230] — 5}[12]

This corresponds to a Lagrangian with a Yukawa interaction term £ D %@//2 +h.c.



On-shell 3-point amplitudes

2
prtp,+p3;=0 P12=P22=P32=0

H: #[1"203"] = g(12)h—ha(23yn—haha(31yha—ha=h

AH :  [1M2723%] = g12] /s3]t w3 )t =h,
D1 h A2

For 3 photons: 12 3
A112713)7 = 2 2
(13)(23)

This however has wrong spin statistics !
One concludes 3-photon interaction is not possible (also for other helicity configurations)

A[1712713+1] = (



On-shell 3-point amplitudes

pyhy b
pi+p+p3=0 pi=p;=p;=0
H: 12030 = g(12)shh(23)h=lamhs(3 1 yhrhsh
AH @ [17M2723"%] = g12]" - h23) w3 1]t =hs
piha Py hsc

For 3 Yang Mills gauge bosons:

12)°
M(1,'2,134 = i\ﬁgf“’”—< )

(13)(23)

On-shell approach immediately saysfabc has to anti-symmetric in all 3 indices
This corresponds to YM Lagrangian interaction gf“bcdﬂGngGlf

where % is the structure constant of a Lie algebra



On-shell 3-point amplitudes

2
prtp,+p3;=0 P12=P22=P32=0

H: .#[1M2"3%] = g(12)=m=ha(23)ym=hhs(31 yha=hs=h,
AH @ [17M2723"%] = g12]" - h23) w3 1]t =hs

P1 h1 P3 h3

For 3 gravitons:

M[172272312] =

1 (12)°
- My (13)2(23)?

This corresponds to one page of Lagrangian obtained by expanding the Einstein-Hilbert
| Mg | | 2
Lagrangian £ = B3 /—&R to cubic order around the flat metric, g, =17, + M—Plhﬂy







On-shell higher-point amplitudes

In the on-shell approach, 3-point amplitudes are the fundamental building blocks,
from which all other amplitudes can be constructed using (generalized) unitarity

Master equation: J‘

dly M (o — X) M (X — )

Ps hy

Disc.(a — f) = iz

X

IZRES

Py hy ) Pihy

pih ) p3hs Pi b, ) Ps3 hs



On-shell higher-point amplitudes

DiscAl (o — ) = iz Jdnx/%(a — X)AM(X — p)
X

Py hy . Py hy

Py : P3hs

At tree level the master equation simplifies into the residue formula

lim M(a— p)= : —M(a —> X)MX — p)

p2—m? pz —mg + ic




On-shell 4-point amplitudes

Consider tree-level 4-point Yang-Mills amplitude .Z[1_2, — (—=3).(—4);]
By crossing symmetry it is equivalent to %[1 219 3 4"‘]

Py b Pahyd pyhy b ol
. + 1+
S-Channel ] px —hye: pyhye R ReS(p +ps )2_>0%[1 2b3 4
I .
— + + + +
= —MN[1,2, (=) 1MH3F4T s,
pihya pyhsc pLha pihsc
prhyb pahyd p3hsc pihnd

R, =Res(, 4, oM1,2,3747
= =M1, (=), 371 M[412)]

_pX_hXe: thXe

t-channel

P pshsc piha pahyb

thZb p3h3c p4h4d pibsc

R, = Res(p1+p4)2—>0% 1152 3? 4:?
= —M[1,(—w),; 43 1M (3fu;2;]

u-channel

—py —hye . Dx hye

piha pyhyd pLhia Pyl b



On-shell 4-point amplitudes

M1,2,3747

pyhy b pyhyd pyhy b pahyd
: ) (12)%[34]?
s-channel — pyx —hyel pyhye Ry = =28 fupeSede
I . 5
Pl Pahsc piha p3hsc
pahyb pahyd p3hsc Pylnd
§ , (12)2[34]2
t-channel Jox _he. pxhxe Rt — _2g faceﬁade p
p]hla p3h3c plhla pzhzb
prhy b p3hsc pyhyd D3 3cC

u-channel

: 12)2[34]2
>ez Pxhxe Ru = _282 adefbce< > [ ]
. A)

piha pyhyd phya pohyb



On-shell 4-point amplitudes

(12)[341°
RS = —2g ? abefcde /
2 2
Reconstructing /%[152,;3?4:;] from its residues: R, = —28%f. fo (12)734]
\)
(12)[341°

Ru — _28 . adefbce

MN1;2,3F4%] = — 2g°(12)7[34]° faczjfde , fad;fﬂce

This has manifestly the correct residue in the t and u channels

It also has the correct residue in the s channel provided the structure functions obey
the Jacobi identity

fabef;‘de _facefbde +fadefbce =0

On-shell methods know about the Lie algebra structure of the theory,
even though gauge invariance was never introduced!



On-shell 4-point amplitudes

(12)[341°
RS = —2g ? abefcde /
2 2
Reconstructing /%[152,;3?4:;] from its residues: R, = —28%f. fo (12)734]
\)
(12)[341°

Ru — _28 . adefbce

More general amplitude consistent with the above residues

_ + A+ 2 2 2 facefbde fadefbce
MN1,2,3747] = —2g7(12)7[34] | FFoals, 1, ul
I St SU >\ ]
This is the so-called contact term ambiguity Has no
It is physical, and parametrises the freedom of adding Kinematic poles
higher-dimensional operators to the Lagrangian
facefbde +fadefbce :
For example, F ; ., = Ceu A corresponds to adding
: . o) :
dimension-8 operator AZ ~ [G,,G,, ]” to the Lagrangian

These should be systematically included when doing YM-EFT,
or dropped if one insists on the usual renormalizable YM

In some class of theories (QED, QCD, GR, Supergravity), contact term ambiguity can be
circumvented by using recursion relations



On-shell 4-point amplitudes

Graviton 2-to-2 scattering in GR ﬂ[1_2_3+4+]

P2 hy

s-channel

Py

t-channel

Py

pahy

u-channel

Py

Py hy

p3 s

p3 s

P3hs

Pyly

P2 hy

—px — hy
1288
p3h;

—px — hx

Pal

. Px hy
p3h;
Palia

. Px hyx
P2 hy
P33

Px hy

P2 hy

A

4 4
o = {12)434

2
MPltu

4 4
o (12)134]

4
M2
pSu

4 4
o (12)'134]

u 2
MPlst



On-shell 4-point amplitudes

| s | | (12)*[34]*
Reconstructing A[1727374™"] from its residues R, = M2t
Pl
e o _ (12)'1341°
12)4[34] T Mpsu
w1234 = U2 i
Mg stu o _ (12)'1341°
! M3, st

up to a contact term ambiguity,
which corresponds to the possibility of adding

R? higher-dimensional operators to the GR Lagrangian

purof






QFT simpler and more intuitive

Many QFT facts become more transparent in the on-shell light

Lack of 3-photon interactions

Emergence of a gauge group structure for theories of massless spin-1 bosons
with cubic interactions

The need for equivalence theorem in theories with a massless spin-2 boson
The need for supergravity in theories with massless spin-3/2 fermions
The impossibility of massless particles with spin > 2

The structure of minimal coupling to electromagnetism or gravity for massive
higher-spin particles

Maximum possible cutoff scale for theories with massive higher-spin particles

Yang theorem (a massive spin-1 particle cannot decay into a pair of identical
massless spin-1 particles)



QFT simpler and more intuitive

Yang theorem
Decay of massive vector to photons described by the amplitude /%[1]K2h23h3]

For both photons of negative helicity
the most general on-shell 3-point amplitude consistent with little group invariance is

%[lezy 3,17 = 7_()( /12)()(5/13)(/12/13)

But that has wrong spin statistics under (2 < 3) so impossible !

Same conclusion for other helicity configurations



RG running on-shell

e Perhaps the most spectacular application of on-shell methods is for
calculating RG running of higher-dimensional operators in EFTs

e \Working on shell greatly simplifies the calculations and makes them
more transparent

¢ |t also elucidates the structure of the anomalous dimension matrix, in
particular it allows one to understand some of the 'magic zeros" that
appear mysterious from the point of view of standard calculations

e Especially for gravitational theories, on-shell methods offer a lot of extra
mileage

e On-shell methods can also be readily extended beyond one loop,
avoiding lots of complications of the standard approach (such as e.q.
evanescent operators)



RG running on-shell

General structure of 4-point amplitudes up to one loop:

My = M, O Z > I, + triangles + boxes + rational

X=s.,t,U

At one loop, only bubbles matter for calculation of anomalous dimensions,
because scalar triangle and box integrals, as well as rational terms have no UV divergences

Boxes do have UV divergences and contribute to anomalous dimensions
J dk 1 1 [t < ,42>
+ log >t 2
€ pP

Ip2 — —
iQn)d kK2(k + p)? 1672
Unitarity master equation: Discy A [1234] = iz Jdﬂxy/ﬂ[UXY]/%[(—X)(—Y)34]

) =

allows one to extract bubble coefficients: ¢ = 87&9?{ Z JdHXy/%[12XY]/%[(—X)(— Y)34]}

/

Drop all logs and IR divergences

cs+ch+ X
P b Lt R
dlog i 82




Classical phenomena

e The KMOC formalism allows one to connect classical observables
(momentum or spin kick, waveforms for emitted radiation, etc) to quantum
amplitudes in classical (soft momentum exchange) limit

e Classical gravitational observables can be calculated from amplitudes of
scattering of point-like massive particles coupled to gravity (possibly in a non-
minimal way). The observables are obtained in the post-Minkowskian (PM)
expansion, where loop expansion of amplitudes corresponds to expansion in

inverse powers of Mp, on classical side

e Observables are naturally obtained in a Lorentz-invariant form with resummed
velocity expansion, thus containing information about infinite orders in post-
Newtonian expansion, typically employed by classical GR practitioners

e Spin effects can be easily included by considering scattering of massive
particles with spin

e On-shell methods provide a lot of mileage for calculating gravitational
amplitudes, pushing the current state of the art to 5PM for some observables



Classical phenomena

Example: gravitational waveforms at leading PM order

on-shell

spectral measure / strain
waveform lg, l
f\ W0 ro 0 f ()
— — — Tt (
W) = h h
647t3m1m2 ,J s

/
2,

In fact, the waveform can be expressed in terms of a single residue of the 5-point amplitude

1 ® e iw[byn+z(itn)b] _
f(w) = — [ %{R(w2—>a)(ﬁln)[yﬁz—ﬁ1+zb+i\/zz+1\'7])}
64rnimmn/y* —1J_« /72 +1
+(1 & 2)

R = Reswzz_)oﬂ [((py + Wl)q)l(p2 + w2)q>2(—p1)a>l(—pz>a>2(—wn)Z]

In GR, at leading order in spin expansion

WO mym, L { (Aldy, ] — Alzh + V22 + 19,27, — i51)° + (Alfy, 5] — Aleh + iV/Z2 + 19, ,])° }

[)=—

! S12n2bMg/v? — 1(n)? 1/22 + 1 y(fln) — (@yn) + z(bn) + iy/22 + 1(¥n) ="
+(1 & 2)

Ala, b] = (4,acbsl,)
See talk of Panagiotis Marinellis tomorrow for application to scalar-tensor theories



