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Spinor helicity formalism
Consider massless momentum , such that pμ p2 = 0

pσ ≡ pμσμ = ( p0 − p3 −p1 + ip2

−p1 − ip2 p0 + p3 )
det[pσ] = 0 ⇒ [pσ]α ·β = λαλ̃ ·β α, ·β ∈ 1,2

Helicity spinors associated with momentum  pμ

σμ = (1,σ)



Spinor helicity formalism
If you think you've never seen helicity spinors...

In the helicity basis uA(p, − ) = (λα

0 ) uA(p, + ) = ( 0
λ̃

·β)

In this class we shall use the Feynman gauge where tν ≡ 0 and the propagator is simply

Aµ Aν

q →
=
−igµν

q2 + i0
. (6)

Defining the Feynman gauge in terms of restrictions on the Aµ(x) fields is rather complicated,

so I’ll postpone this issue until April; all we need for now is the photon propagator (6).

Another commonly used gauge is the Landau gauge in which the Aµ(x) field satisfies a

Lorentz-invariant condition ∂µA
µ(x) ≡ 0. In the Landau gauge, the photon propagator is

Aµ Aν

q →
=

−i

q2 + i0
×

(

gµν −
qµqν

q2 + i0

)

. (7)

QED vertices follow from electron-photon interaction term eAµ × ΨγµΨ. There is only

one vertex type, namely

µ

α

β

= (+ieγµ)βα . (8)

This vertex has valence = 3 and the 3 lines must be of specific types: one wavy (photonic)

line, one solid line with incoming arrow, and one solid line with outgoing arrow.

Now consider the external lines. The momentum-space Feynman rules of the scalar

theory do not have any factors due to external lines, but QED Feynman rules are more

complicated. The photonic external lines carry polarization vectors:

k →
= eµ(k,λ) (9)

for an incoming photon, and

k →
= e∗µ(k,λ) (10)

for an outgoing photon.

The fermionic external lines carry plane-wave Dirac spinors u(p, s), v(p, s), ū(p, s), and

v̄(p, s). Specifically,

an incoming electron e− carries
p→

= uα(p, s), (11)

2

A A = 1…4

Here  is a 4-component Dirac spinor describing polarization of an external fermion 
entering a Feynman diagram 

uA

For incoming real momenta,  
 

E > 0
pμ = E(1, sin θ cos ϕ, sin θ sin ϕ, cos θ)

λ̃ ·α = 2E
−eiϕ sin θ

2

cos θ
2

λα = 2E
−e−iϕ sin θ

2

cos θ
2



Spinor helicity formalism

Transformation corresponds to the little group associated with momentum pμ
i

piσ = λiλ̃i

The decomposition of momentum into spinors is not unique because the transformation 

λi → z−1
i λi λ̃i → ziλ̃i

does not change the momentum pμ
i

S-matrix elements or amplitude transform under the little group

ℳ[1h12h2…nhn] → z2h1
1 z2h2

2 …z2hn
n ℳ[1h12h2…nhn]

Weights of amplitude under little group transformations depend on particles' helicities 



Spinor helicity formalism
p1σ = λ1λ̃1 p2σ = λ2λ̃2

Spinors  transform in the spinor representation under the first SU(2) factorλiα

Lorentz algebra is equivalent to SU(2) × SU(2)

Spinors  transform in the spinor representation under the second SU(2) factorλ̃iα

Lorentz invariants: ⟨12⟩ ≡ ϵαβλ1βλ2α ≡ λα
1 λ2α

[12] ≡ ϵ ·α ·βλ̃1 ·αλ̃2 ·β ≡ λ̃1 ·αλ̃ ·α
2

But contracting twiddled and untwiddled spinors is illegal !  λα
1 λ̃2 ·αx

Note also that ⟨jj⟩ = [ jj] = 0⟨ij⟩ = − ⟨ ji⟩ [ij] = − [ ji] which implies

Momentum contractions can be traded for spinor contractions

2p1p2 = Tr[p1σp2σ̄] = λ1 αλ̃1 ·βλ̃
·β
2λα

2 = (λ2λ1)(λ̃1λ̃2) ≡ ⟨21⟩[12]
σ̄μ = (1, − σ) λα = ϵαβλβ[pσ̄]

·βα = λ̃
·βλα



Spinor helicity formalism

Massive spinors  and   are defined by the decompositionχJ χ̃J

Consider massive momentum , such that pμ p2 = m2

pσ =
2

∑
J=1

χJ χ̃J

ℳ[1J1…J2S…] → ΩJ1
K1

…ΩJ2S
K2S

ℳ[1K1…K2S…]

χJ χK = mδJ
K χ̃J χ̃K = mδK

J

Massive spinor transform under SU(2) little gauge group 
 

 χJ → ΩJ
K χK χ̃J → ΩJ

K χ̃K χJ → Ω†
J

KχK χ̃J → Ω†
J

Kχ̃K

Massive 
Spin-S 
particle

Little group indices fully symmetrized
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On-shell 3-point kinematics

p1

p2

p3

h2

h3h1

2pipj = (pi + pj)2 = p2
k = 0 i, j, k ∈ 1…3 i ≠ j ≠ k

Assuming all particles are on-shell, incoming and massless

p1 + p2 + p3 = 0 p2
1 = p2

2 = p2
3 = 0

It follows that all Mandelstam invariant vanish in this case 



On-shell 3-point kinematics

p1

p2

p3

h2

h3h1

Still, using helicity spinors, there exist Lorentz invariants for this kinematics 

p1 + p2 + p3 = 0 p2
1 = p2

2 = p2
3 = 0

[ jk] = 0 ⟨jk⟩ ≠ 0

λ̃i = −
⟨jk⟩
⟨ik⟩

λ̃j i ≠ j ≠ k

Holomorphic kinematics Anti-holomorphic kinematics

⟨ jk⟩ = 0 [ jk] ≠ 0

λi = −
[ jk]
[ik]

λj i ≠ j ≠ k



On-shell 3-point amplitudes

For a given helicity configuration, for H and AH kinematics each, 
 there exist a single possible on-shell 3-point amplitude 

consistent with Lorentz invariance and little group scaling

H : ℳ[1h12h23h3] = g⟨12⟩h3−h1−h2⟨23⟩h1−h2−h3⟨31⟩h2−h3−h1

AH : ℳ[1h12h23h3] = g̃[12]h1+h2−h3[23]h2+h3−h1[31]h3+h1−h2

p1

p2

p3

h2

h3h1

p1 + p2 + p3 = 0 p2
1 = p2

2 = p2
3 = 0



On-shell 3-point amplitudes

H : ℳ[1h12h23h3] = g⟨12⟩h3−h1−h2⟨23⟩h1−h2−h3⟨31⟩h2−h3−h1

AH : ℳ[1h12h23h3] = g̃[12]h1+h2−h3[23]h2+h3−h1[31]h3+h1−h2

p1

p2

p3

h2

h3h1

p1 + p2 + p3 = 0 p2
1 = p2

2 = p2
3 = 0

For 3 scalars, the only possible amplitude is a constant independent of kinematics  

ℳ[102030] = κΛ

This corresponds to a Lagrangian with an interaction term ℒ ⊃
κΛ
3!

ϕ3



On-shell 3-point amplitudes

H : ℳ[1h12h23h3] = g⟨12⟩h3−h1−h2⟨23⟩h1−h2−h3⟨31⟩h2−h3−h1

AH : ℳ[1h12h23h3] = g̃[12]h1+h2−h3[23]h2+h3−h1[31]h3+h1−h2

p1

p2

p3

h2

h3h1

p1 + p2 + p3 = 0 p2
1 = p2

2 = p2
3 = 0

For 2 fermions and one  scalar:

ℳ[1−1/22−1/230] = y⟨12⟩
ℳ[1+1/22+1/230] = ỹ[12]

This corresponds to a Lagrangian with a Yukawa interaction term ℒ ⊃
y
2

ϕψ2 + h . c .



On-shell 3-point amplitudes

H : ℳ[1h12h23h3] = g⟨12⟩h3−h1−h2⟨23⟩h1−h2−h3⟨31⟩h2−h3−h1

AH : ℳ[1h12h23h3] = g̃[12]h1+h2−h3[23]h2+h3−h1[31]h3+h1−h2

p1

p2

p3

h2

h3h1

p1 + p2 + p3 = 0 p2
1 = p2

2 = p2
3 = 0

For 3 photons:

ℳ[1−12−13+1]? = ?g
⟨12⟩3

⟨13⟩⟨23⟩
This however has wrong spin statistics !  

One concludes 3-photon interaction is not possible (also for other helicity configurations)

ℳ[1−12−13+1] = 0



On-shell 3-point amplitudes

H : ℳ[1h12h23h3] = g⟨12⟩h3−h1−h2⟨23⟩h1−h2−h3⟨31⟩h2−h3−h1

AH : ℳ[1h12h23h3] = g̃[12]h1+h2−h3[23]h2+h3−h1[31]h3+h1−h2

p1 h1 a

p2 h2 b

p3 h3 c

p1 + p2 + p3 = 0 p2
1 = p2

2 = p2
3 = 0

For 3 Yang Mills gauge bosons:

ℳ[1−1
a 2−1

b 3+1
c ] = i 2gfabc ⟨12⟩3

⟨13⟩⟨23⟩
On-shell approach immediately says  has to anti-symmetric in all 3 indices 

This corresponds to YM Lagrangian interaction  
where  is the structure constant of a Lie algebra

f abc

gf abc∂μGa
ν Gb

μGc
ν

f abc



On-shell 3-point amplitudes

H : ℳ[1h12h23h3] = g⟨12⟩h3−h1−h2⟨23⟩h1−h2−h3⟨31⟩h2−h3−h1

AH : ℳ[1h12h23h3] = g̃[12]h1+h2−h3[23]h2+h3−h1[31]h3+h1−h2

p1

p2

p3

h2

h3h1

p1 + p2 + p3 = 0 p2
1 = p2

2 = p2
3 = 0

For 3 gravitons:

ℳ[1−22−23+2] = −
1

MPl

⟨12⟩6

⟨13⟩2⟨23⟩2

This corresponds to one page of Lagrangian obtained by expanding the Einstein-Hilbert 

Lagrangian  to cubic order around the flat metric,  ℒ =
M2

Pl

2
−gR gμν = ημν +

2
MPl

hμν



On-shell

Higher-point 

Amplitudes



On-shell higher-point amplitudes
In the on-shell approach, 3-point amplitudes are the fundamental building blocks,  
from which all other amplitudes can be constructed using (generalized) unitarity

Discℳ(α → β) = i∑
X

∫ dΠXℳ(α → X)ℳ(X → β)
Master equation: 

p1 h1

p2 h2

p3 h3

p4 h4
p1

p2

p3

h2

h3h1

p4 h4

−pX − hX pX hX

p1

p2

p3

h2

h3h1

p4 h4

−pX − hX pX hX

−pY − hY pY hY

=

...



On-shell higher-point amplitudes
Discℳ(α → β) = i∑

X
∫ dΠXℳ(α → X)ℳ(X → β)

p1

p2

p3

h2

h3h1

p4 h4

−pX − hX pX hX= ...

p1 h1

p2 h2

p3 h3

p4 h4

At tree level the master equation simplifies into the residue formula

lim
p2

α→m2
X

ℳ(α → β) = −
1

p2
α − m2

X + iϵ
ℳ(α → X)ℳ(X → β)



On-shell 4-point amplitudes
Consider tree-level 4-point Yang-Mills amplitude ℳ[1−

a 2−
b → (−3)−

c (−4)−
d ]
ℳ[1−

a 2−
b 3+

c 4+
d ]By crossing symmetry it is equivalent to 

s-channel =

Rt ≡ Res(p1+p3)2→0ℳ[1−
a 2−

b 3+
c 4+

d ]

= −ℳ[1−
a (−t)−

e 3+
c ]ℳ[4+

d t+
e 2−

b ]

Rs ≡ Res(p1+p2)2→0ℳ[1−
a 2−

b 3+
c 4+

d ]

= −ℳ[1−
a 2−

b (−s)+
e ]ℳ[3+

c 4+
d s+

e ]

t-channel

p1 h1 a

p2 h2 b

p3 h3 c

p4 h4 d

=

p1 h1 a

p4 h4 d

p2 h2 b

p3 h3 c

−pX − hX e pX hX eu-channel

p1 h1 a

p2 h2 b

p4 h4 d

p3 h3 c

=
p1 h1 a

p3 h3 c

p2 h2 b

p4 h4 d

−pX − hX e pX hX e

p1 h1 a

p2 h2 b

p3 h3 c

p4 h4 d

p1 h1 a

p2 h2 b

p3 h3 c

p4 h4 d

−pX − hX e pX hX e

Ru ≡ Res(p1+p4)2→0ℳ[1−
a 2−

b 3+
c 4+

d ]

= −ℳ[1−
a (−u)−

e 4+
d ]ℳ[3+

c u+
e 2−

b ]



On-shell 4-point amplitudes

s-channel =

Rt = −2g2 face fbde
⟨12⟩2[34]2

st-channel

p1 h1 a

p2 h2 b

p3 h3 c

p4 h4 d

=

p1 h1 a

p4 h4 d

p2 h2 b

p3 h3 c

−pX − hX e pX hX eu-channel

p1 h1 a

p2 h2 b

p4 h4 d

p3 h3 c

=
p1 h1 a

p3 h3 c

p2 h2 b

p4 h4 d

−pX − hX e pX hX e

p1 h1 a

p2 h2 b

p3 h3 c

p4 h4 d

p1 h1 a

p2 h2 b

p3 h3 c

p4 h4 d

−pX − hX e pX hX e

Ru = −2g2 fade fbce
⟨12⟩2[34]2

s

Rs = −2g2 fabe fcde
⟨12⟩2[34]2

t

ℳ[1−
a 2−

b 3+
c 4+

d ]



On-shell 4-point amplitudes

Reconstructing  from its residues:ℳ[1−
a 2−

b 3+
c 4+

d ]

Rs = −2g2 fabe fcde
⟨12⟩2[34]2

t

Rt = −2g2 face fbde
⟨12⟩2[34]2

s

Ru = −2g2 fade fbce
⟨12⟩2[34]2

s

ℳ[1−
a 2−

b 3+
c 4+

d ] = − 2g2⟨12⟩2[34]2[ face fbde

st
+

fade fbce

su ]
This has manifestly the correct residue in the t and u channels

It also has the correct residue in the s channel provided the structure functions obey  
the Jacobi identity 

fabe fcde − face fbde + fade fbce = 0

On-shell methods know about the Lie algebra structure of the theory,  
even though gauge invariance was never introduced! 



On-shell 4-point amplitudes

Reconstructing  from its residues:ℳ[1−
a 2−

b 3+
c 4+

d ]

Rs = −2g2 fabe fcde
⟨12⟩2[34]2

t

Rt = −2g2 face fbde
⟨12⟩2[34]2

s

Ru = −2g2 fade fbce
⟨12⟩2[34]2

s

ℳ[1−
a 2−

b 3+
c 4+

d ] = − 2g2⟨12⟩2[34]2[ face fbde

st
+

fade fbce

su
+ Fabcd[s, t, u]]

More general amplitude consistent with the above residues 

Has no  
kinematic poles

This is the so-called contact term ambiguity 
It is physical, and parametrises the freedom of adding  

higher-dimensional operators to the Lagrangian  

For example,  corresponds to adding  

 dimension-8 operator  to the Lagrangian

Fabcd = CG4
face fbde + fade fbce

Λ4

Δℒ ∼ [Ga
μνGa

μν]2

These should be systematically included when doing YM-EFT,  
or dropped if one insists on the usual renormalizable YM

In some class of theories (QED, QCD, GR, Supergravity), contact term ambiguity can be 
circumvented by using recursion relations 



On-shell 4-point amplitudes

s-channel =

Rt =
⟨12⟩4[34]4

M2
Plsut-channel

p1 h1

p2 h2

p3 h3

p4 h4

=

p1 h1

p4 h4

p2 h2

p3 h3

−pX − hX pX hXu-channel

p1 h1

p2 h2

p4 h4

p3 h3

=
p1 h1

p3 h3

p2 h2

p4 h4

−pX − hX pX hX

p1 h1

p2 h2

p3 h3

p4 h4

p1 h1

p2 h2

p3 h3

p4 h4

−pX − hX pX hX Rs =
⟨12⟩4[34]4

M2
Pltu

ℳ[1−2−3+4+]Graviton 2-to-2 scattering in GR

Ru =
⟨12⟩4[34]4

M2
Plst



On-shell 4-point amplitudes
Reconstructing  from its residuesℳ[1−2−3+4+] Rs =

⟨12⟩4[34]4

M2
Pltu

Rt =
⟨12⟩4[34]4

M2
Plsu

Ru =
⟨12⟩4[34]4

M2
Plst

ℳ[1−2−3+4+] =
⟨12⟩4[34]4

M2
Plstu

up to a contact term ambiguity,  
which corresponds to the possibility of adding  
 higher-dimensional operators to the GR Lagrangian   R4

μναβ



Some 

Applications



QFT simpler and more intuitive
Many QFT facts become more transparent in the on-shell light 

• Lack of 3-photon interactions  

• Emergence of a gauge group structure for theories of massless spin-1 bosons 
with cubic interactions  

• The need for equivalence theorem in theories with a massless spin-2 boson 

• The need for supergravity in theories with massless spin-3/2 fermions 

• The impossibility of massless particles with spin > 2 

• The structure of minimal coupling to electromagnetism or gravity for massive 
higher-spin particles  

• Maximum possible cutoff scale for theories with massive higher-spin particles 

• Yang theorem (a massive spin-1 particle cannot decay into a pair of identical 
massless spin-1 particles)



QFT simpler and more intuitive
Yang theorem

ℳ[1JK2−
γ 3−

γ ]? = ?
g

Λ2
(χJ

1 λ2)(χK
1 λ3)(λ2λ3)

Decay of massive vector to photons described by the amplitude  ℳ[1JK2h2
γ 3h3

γ ]

For both photons of negative helicity  
the most general on-shell 3-point amplitude consistent with little group invariance is   

But that has wrong spin statistics under  so impossible ! (2 ↔ 3)

Same conclusion for other helicity configurations 



RG running on-shell
• Perhaps the most spectacular application of on-shell methods is for 

calculating RG running of higher-dimensional operators in EFTs 

• Working on shell greatly simplifies the calculations and makes them 
more transparent 
  

• It also elucidates the structure of the anomalous dimension matrix, in 
particular it allows one to understand  some of the``magic zeros" that 
appear mysterious from the point of view of standard calculations 

• Especially for gravitational theories, on-shell methods offer a lot of extra 
mileage 

• On-shell methods can also be readily extended beyond one loop, 
avoiding lots of complications of the standard approach (such as e.g. 
evanescent operators) 



RG running on-shell
ℳ4 = ℳ(0)

4 + ∑
x=s,t,u

cx
2Ix

2 + triangles + boxes + rational
General structure of 4-point amplitudes up to one loop:

At one loop, only bubbles matter for calculation of anomalous dimensions, 
 because scalar triangle and box integrals, as well as rational terms have no UV divergences

Boxes do have UV divergences and contribute to anomalous dimensions 

Ip2

2 ≡ ∫
ddk

i(2π)d

1
k2(k + p)2

=
1

16π2 [ 1
ϵ

+ log( −
μ2

p2 ) + 2]
Unitarity master equation: Discs

2ℳ[1234] = i∑ ∫ dΠXYℳ[12XY ]ℳ[(−X)(−Y )34]

allows one to extract bubble coefficients: cs
2 = 8πℛ{∑ ∫ dΠXYℳ[12XY ]ℳ[(−X)(−Y )34]}

∂
∂ log μ

ℳ(0)
4 = −

cs
2 + ct

2 + cu
2

8π2
+ γcollℳ(0)

4

Drop all logs and IR divergences



Classical phenomena
• The KMOC formalism allows one to connect classical observables 

(momentum or spin kick, waveforms for emitted radiation, etc) to quantum 
amplitudes in classical (soft momentum exchange) limit 

• Classical gravitational observables can be calculated from amplitudes of 
scattering of point-like massive particles coupled to gravity (possibly in a non-
minimal way). The observables are obtained in the post-Minkowskian (PM) 
expansion, where loop expansion of amplitudes corresponds to expansion in 
inverse powers of  on classical side  

• Observables are naturally obtained in a Lorentz-invariant form with resummed 
velocity expansion, thus containing information about infinite orders in post-
Newtonian expansion, typically employed by classical GR practitioners  

• Spin effects can be easily included by considering scattering of massive 
particles with spin  

• On-shell methods provide a lot of mileage for calculating gravitational 
amplitudes, pushing the current state of the art to 5PM for some observables 

MPl
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2S2 20S2

1S1 10S1
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2S2 20S2

1S1 10S1

h

2

fh(ω) =
1

64π3m1m2 ∫ dμ

on-shell  
measurespectral 

waveform

Classical phenomena
Example: gravitational waveforms at leading PM order

See talk of Panagiotis Marinellis tomorrow for application to scalar-tensor theories

fh(ω) = −
1

64π2m1m2 γ2 − 1 ∫
∞

−∞

dzeiω[b1n+z( ̂u1n)b]

z2 + 1
ℛ{R(w2 → ω( ̂u1n)[γ ̂u2 − ̂u1 + zb̃ + i z2 + 1ṽ])}

+(1 ↔ 2)

Wh(t) = ∫
∞

−∞

dω
2π

fh(ω)

In fact, the waveform can be expressed in terms of a single residue of the 5-point amplitude  

R ≡ Resw2
2→0ℳ[(p1 + w1)Φ1

(p2 + w2)Φ2
(−p1)Φ̄1

(−p2)Φ̄2
(−ωn)s

h]

strain

In GR, at leading order in spin expansion

W (0)
h (t) = −

m1m2

512π2bM3
Pl γ2 − 1( ̂u1n)2

1

z2 + 1
ℛ{ (Λ[ ̂u1, ̂u2] − Λ[zb̃ + i z2 + 1ṽ,2γ ̂u1 − ̂u2])2 + (Λ[ ̂u1, ̂u2] − Λ[zb̃ + i z2 + 1ṽ, ̂u2])2

γ( ̂u2n) − ( ̂u1n) + z(b̃n) + i z2 + 1(ṽn) }
|z= t − (b1n)

( ̂u1n)b

+(1 ↔ 2)
Λ[a, b] ≡ (λnaσbσ̄λn)


