

A global picture of the Epoch of Reionisation

Adélie Gorce

18/11/2024

OVERVIEW

- I. Introduction: What is reionisation?
- II. The 21cm signal
- III. CMB signatures
- IV. Data combinations

Why?

Reionisation & Cosmic Dawn

The chronology & topology of reionisation can shed light on the nature of the first stars, the formation of galaxies, the density of the IGM...

Why?

Understanding reionisation

Understanding reionisation

So what do (we think) we know so far?

- Starts slowly around redshift 15-20?
- Reaches 50% ionisation around z = 7?
- Ends z < 6?
- Lasts for 0.5-1Gy?

Understanding reionisation

So what do (we think) we know so far?

Not that much...

How can we do better?

1. By combining data sets

Understanding reionisation

So what do (we think) we know so far?

Not that much...

How can we do better?

- 1. By combining data sets
- 2. By working on our theoretical understanding of reionisation

With simulations...

Or analytical models...

See, e.g., Furlanetto+2004, Gorce+2020, Schneider+2020, Mirocha+2022, Muñoz 2023, Georgiev+2024...

Introduction

Understanding reionisation

So what do we know so far?

Not that much...

How can we do better?

- 1. By combining data sets
- 2. By working on our theoretical understanding of reionisation
- 3. By finding direct observables

Following reionisation redshift by redshift

The 21cm signal

The 21cm signal contains information about

the global history of reionisation

The 21cm signal contains information about

- the global history of reionisation
- the properties of the early Universe and galaxies

For different minimal halo mass required for the hosted galaxy to produce ionising photons:

21CMFAST, Mesinger+2016

Radio interferometers around the world

A world-wide effort...

Interferometry 101

Interferometers measure visibilities i.e. Fourier modes on the sky

Interferometry 101

Interferometers measure visibilities i.e. Fourier modes on the sky

$$V_{ij}(\nu) = \int B_{ij}(\hat{\mathbf{r}},\nu) I(\hat{\mathbf{r}},\nu) \exp\left[-2\pi i \frac{\nu}{c} \mathbf{b}_{ij} \cdot \hat{\mathbf{r}}\right] d\Omega$$

An estimator of the power spectrum is built directly from the visibilities: $\widehat{P}(\mathbf{k}) \propto \left\langle \left| \widetilde{V}_{ij}(\nu) \right|^2 \right\rangle$

- Dense arrays measure large-scale fluctuations (e.g. EDGES' "table")
- Wide arrays measure small-scale fluctuations (e.g. HERA)

Upper limits on the high-z power spectrum

... which has only led to upper limits so far.

Barry+2022

Upper limits on the high-z power spectrum

- o Lowest upper limits on the 21cm power spectrum from HERA
- Measurements at z = 7.9 and z = 10.4
- Results consistent with noise

The IGM was heated by z = 10.4, likely by high-mass X-ray binaries

HERA collab et al. 2023

Upper limits on the high-z power spectrum

- o Lowest upper limits on the 21cm power spectrum from HERA
- Measurements at z = 7.9 and z = 10.4
- Results consistent with noise

HERA collab et al. 2023

21cm intensity mapping

Why intensity mapping?

- SKA will measure maps of the brightness temperature of the 21cm in the IGM
- These maps give access to information about galaxies washed out in large-scale observations:

21cm intensity map (21CMFAST simulation)

SKAO

Why intensity mapping?

- SKA will measure maps of the brightness temperature of the 21cm in the IGM
- These maps give access to information about galaxies washed out in large-scale observations
- Effort in developing efficient tools to analyse these datasets to
 - Constrain reionisation and galaxy properties
 - Tackle huge data volumes
 - Complement PS analyses (ex: non-Gaussianity)

21cm intensity map (21CMFAST simulation)

SKAO

Gorce & Pritchard 2019

November 18, 2024

30

Why intensity mapping?

- SKA will measure maps of the brightness 0 temperature of the 21cm in the IGM
- These maps give access to information about galaxies 0 washed out in large-scale observations
- Effort in developing efficient tools to analyse these Ο datasets to
 - Constrain reionisation and galaxy properties ٠
 - Tackle huge data volumes
 - **Complement PS analyses**
- Solutions (non-exhaustive list): Ο
 - ★ Minkowski functionals & topology (Yoshiura+2016; Elbers & v.d. Weygaert 2017; Chen+2018; Giri+2020; Thélie+2022)

SKAO

- ★ Higher order statistics & bispectrum (e.g., Watkinson+2019; Gorce & Pritchard 2019, Majumdar+2020, Hutter+2020)
- ★ Al techniques (e.g., Chardin+2019, Bianco+2021, Neutsch+2022)
- ★ Scattering transforms (Greig+2022, Hothi+2023, Prelogović+2024)
- One-point statistics (Mellema+2006; Gorce+2020; Kittiwisit+2018, 2022)

*δT*_b [mK]

21cm intensity map (21CMFAST simulation)

The CMB

Unearthing the imprints of reionisation

CMB scattering during reionisation

CMB scattering during reionisation

Reionisation is a patchy process...

TEMPERATURE

POLARISATION

+ y-distortions...

see, e.g., Aghanim+1996, Dvorkin & Smith 2009, Roy+2018, 2020, Gorce+2020

November 18, 2024

Adélie Gorce - AstroParticle Symposium

The power spectrum of free electrons $P_{ee}(k,z)$

EMMA simulation, Aubert+2008, Gillet+2015

The power spectrum of free electrons $P_{ee}(k,z)$

Early times: power-law
$$P_{ee}(k, z) = \frac{\epsilon_0 X_e(z)^{-1/5}}{1 + [k/\kappa]^3 X_e(z)}$$

 $z = 10.1, x_{HII} = 0.0117$

- α_0 : constant amplitude on large scales \leftrightarrow variance of the field
- κ : drop-off frequency \leftrightarrow minimal size of ionised regions

Gorce+2020

The power spectrum of free electrons

Depends on cosmology and a few reionisation parameters (z_{re} , z_{end} , α_0 , κ)...

ONGOING

But... model parameters have no clear physical meaning:

- Recalibrate parameterisation on LoReLi simulations: 10 000 simulations of reionisation varying astrophysics, e.g., minimum halo mass to form stars, X-ray luminosity, ionising escape fraction... (Meriot & Semelin 2023)
- Include a physical dependence, e.g., with symbolic regression

The power spectrum of free electrons

Depends on cosmology and a few reionisation parameters (z_{re} , z_{end} , α_0 , κ)...

One model that allows joint and cross-analyses between datasets...

The kinetic Sunyaev Zel'dovich effect

There is information about reionisation in the kSZ spectrum...

1. About global reionisation history

2. About reionisation morphology (and effectively galaxy properties)

Gorce+2020, and e.g. McQuinn+2005; Iliev+2007; Battaglia+2013; Park+2013...

Current high-I analyses: the kSZ as a nuisance

There is information about reionisation in the kSZ spectrum...

- ... but it is not used in current analyses, resulting in imprecise constraints.
- 1. Measure kSZ by fitting the amplitude of a template Use of templates although amplitude *and* shape depend on reionisation
- 2. And propagate to reionisation with scalings: $A^{patchy} \propto z_{re} * \Delta z^{0.51}$ (Battaglia+2013) Scaling relations are largely dependent on the simulations used

Current high-I analyses: the kSZ as a nuisance

There is information about reionisation in the kSZ spectrum...

... but it is not used in current analyses, resulting in imprecise constraints.

Proposed solution:

Replace templates by analytic derivations of the SZ spectra to retrieve the cosmological information enclosed in the foregrounds

+ joint analysis with large-scale data

Results on SPT data: Free cosmology

Free cosmological parameters compared to initial analysis (Reichardt+2021)

- Planck 2018 Gaussian priors on $\Omega_b h^2$, $\Omega_c h^2$, θ_{MC} , n_s
- Flat priors on other parameters (A_s, reion)

Results on SPT data: Free cosmology

Gorce, Douspis, Salvati 2022

Results on SPT data: Free cosmology

Free cosmological parameters compared to initial analysis (Reichardt+2021)

- Planck 2018 Gaussian priors on $\Omega_b h^2$, $\Omega_c h^2$, θ_{MC} , n_s
- Flat priors on other parameters (A_s, reion)

SPT data favour a different cosmology than Planck, including **earlier reionisation**: $\tau = 0.062 \pm 0.012 (1\sigma)$ $z_{re} = 7.9 \pm 1.1 (1\sigma)$

--- Planck (large-scale) only

Gorce, Douspis, Salvati 2022

Results on SPT data: Free cosmology

Free cosmological parameters compared to initial analysis (Reichardt+2021)

- Planck 2018 Gaussian priors on $\Omega_b h^2$, $\Omega_c h^2$, θ_{MC} , n_s
- Flat priors on other parameters (A_s, reion)

SPT data favour a different cosmology than Planck, including **earlier reionisation**: $\tau = 0.062 \pm 0.012 (1\sigma)$ $z_{re} = 7.9 \pm 1.1 (1\sigma)$

Next steps (ongoing):

- ➢ Use large simulation datasets to improve Pee model (LoReLi, Meriot & Semelin 2023)
- Improve modelling of other foregrounds (CIB)
- \blacktriangleright Consistent analysis with large-scale data \rightarrow

tSZ & kSZ emulators are available at https://szdb.osups.universite-paris-saclay.fr

Combining data sets

Minimising systematics and uncertainties with independent measurements

Combining observables

Combining observables

To combine observables in a consistent way, we need a common theoretical model

★ Simulations

e.g., Su+2011; Greig+2017; La Plante + 2021, 2023; Hutter+2023

★ Analytical model

e.g., Meerburg+2013; Beane+2019; Mirocha+2022

Combining observables

To combine observables in a consistent way, we need a common theoretical model

- ★ Simulations e.g., Su+2011; Greig+2017; La Plante + 2021, 2023; Hutter+2023
- ★ Analytical model

e.g., Meerburg+2013; Beane+2019; Mirocha+2022

1. kSZ x global 21cm signal

Bégin, Liu, & Gorce 2022

Complementarity kSZ / global 21cm

The complementarity can be leveraged to

1. Better constrain the reionisation history

2. Identify and remove systematics

• 0.05 μ K² tSZxClB residual picked up at 100 σ

Combining observables

To combine observables in a consistent way, we need a common theoretical model

- ★ Simulations e.g., Su+2011; Greig+2017; La Plante + 2021, 2023; Hutter+2023
- ★ Analytical model
 e.g., Meerburg+2013; Beane+2019; Mirocha+2022
- 1. kSZ x global 21cm signal: Measure the reionisation history and identify systematics Bégin, Liu, & Gorce 2022
- 2. kSZ x 21cm PS

Georgiev, Gorce, & Mellema 2024

Joint analysis of kSZ and 21cm power spectrum

• Relate the 21cm signal and the kSZ through their base ingredient: the electron power spectrum

21cm PS

 $\circ~$ Use analytical model of P_{ee} to generate both observables in a forecast \rightarrow constrain reionisation end- and midpoint

University

Joint analysis of kSZ and 21cm power spectrum

Relate the 21cm signal and the kSZ through their base ingredient: the Ο electron power spectrum

kS7

21cm PS

- Use analytical model of P_{ee} to generate both observables in a forecast Ο \rightarrow constrain reionisation end- and midpoint
- With only three data points, one can recover Ο the reionisation mid- and endpoint with very good accuracy

21cm: 1000hrs of observation with SKA. 2 data points at k = $0.5 h M pc^{-1} \& z = 6.5, 7.8$. pkSZ: 1 data point at I=3000 with 10% error bar.

Jniversity

Joint analysis of kSZ and 21cm power spectrum

• Relate the 21cm signal and the kSZ through their base ingredient: the electron power spectrum

kSZ

21cm PS

- Use analytical model of P_{ee} to generate both observables in a forecast \rightarrow constrain reionisation end- and midpoint
- With only three data points, one can recover the reionisation mid- and endpoint with very good accuracy
- And break the tau/As or tau/sum_nu degeneracy!

Combining observables

To combine observables in a consistent way, we need a common theoretical model

- ★ Simulations e.g., Su+2011; Greig+2017; La Plante + 2021, 2023; Hutter+2023
- ★ Analytical model
 e.g., Meerburg+2013; Beane+2019; Mirocha+2022
- 1. kSZ x global 21cm signal: Measure the reionisation history and identify systematics Bégin, Liu, & Gorce 2022
- 2. kSZ x 21cm PS: Leverage limited observations to *also* constrain galaxy properties Georgiev, Gorce, & Mellema 2024

Combining observables

To combine observables in a consistent way, we need a common theoretical model

- ★ Simulations e.g., Su+2011; Greig+2017; La Plante + 2021, 2023; Hutter+2023
- ★ Analytical model
 e.g., Meerburg+2013; Beane+2019; Mirocha+2022
- 1. kSZ x global 21cm signal: Measure the reionisation history and identify systematics Bégin, Liu, & Gorce 2022
- 2. kSZ x 21cm PS: Leverage limited observations to *also* constrain galaxy properties Georgiev, Gorce, & Mellema 2024
- **3.** kSZ x galaxies: SPT data favour late & rapid reionisation histories Nikolic, Mesinger, Qin, & Gorce 2023
- 4. 21cm power spectrum x galaxies: HERA x Roman, need spectroscopic redshifts La Plante, Mirocha, Gorce+ 2023

Conclusions

To understand reionisation, data cross-correlations are necessary to overcome systematics and uncertainties.

Things to look forward to:

СМВ	21cm	GALAXIES & QUASARS
 Cosmic-variance limited τ Small-scale CMB data: kSZ, τ fluctuations ΔΕΛΕΥΤΟΥΤΑΙΑΤΑΙΑΤΑΙΑΤΑΙΑΤΑΙΑΤΑΙΑΤΑΙΑΤΑΙΑΤΑΙΑΤΑΙ	 Global signal & power spectrum Intensity mapping? Intensity because the second s	 Statistical samples of quasar spectra Faint end of luminosity functions Rebin Observatory Trouble for the second secon

The future of EoR study is bright!!

Thank you!