Planck constraints on Cosmic Birefringence and its cross-correlation with the CMB

Based on **G.Zagatti.**, M. Bortolami, A. Gruppuso, P. Natoli, L. Pagano, G. Fabbian (<u>https://arxiv.org/abs/2401.11973</u>).

Cosmic Birefringence

Modified electromagnetic Lagrangian

 $F_{\mu\nu}F^{\mu\nu}$

Modified Maxwell equations

Modified wave equation

Different dispersion relations for rightand left-handed circularly polarized photons

Cumulative and frequency-independent rotation of the polarization plane of **linearly polarized radiation**

Parity-violating term

 $\phi F_{\mu\nu}F^{\mu\nu}$

Cosmic Microwave Background

E-modes B-modes

Parity even

Parity odd

 $\left\langle EB\right\rangle = \left\langle TB\right\rangle = 0$

Rotation induced E- and B-modes

 $a_{\ell m}^{B,tot} = a_{\ell m}^{B} + \delta a_{\ell m}^{B}$

 $a_{\ell m}^{E,tot} = a_{\ell m}^E + \delta a_{\ell m}^E$

AstroParticle Symposium 2024

• Relation between the parity-violating EB cross-correlation and the CB field $\left\langle a_{\ell m}^{E,tot}a_{\ell'm'}^{B,tot,*}\right\rangle = 2\sum_{LM}\alpha_{LM}C_{\ell}^{EE}H_{\ell\ell'}^{L}\xi_{\ell\ell'mm'}^{LM}$ • Estimate of the α_{LM} coefficients	Biased es coefficient \Box mask \Box not h \Box other Re
Inverse variance weighting average	Mean F
$\overline{\alpha}_{LM} \propto \frac{1}{\sigma_L^{-2}} \sum_{\ell\ell' mm'} a^{E,obs}_{\ell m} a^{B,obs,*}_{\ell'm'} K^{LM}_{\ell\ell'mm'}$	(

Harmonic Estimator^[1]

^[1] V. Gluscevic et al. (2012)

Debiasing procedure

stimate of the spherical harmonic ts of the CB field due to:

< effects

Ω

- omogeneous noise
- r signals

equired a *debiasing* procedure

$$\hat{\alpha}_{LM} = \overline{\alpha}_{LM} - \alpha_{LM}^{MF}$$

ield bias, evaluated over simulations

$$\alpha_{LM}^{MF} = \left\langle \overline{\alpha}_{LM} \right\rangle_{sim}$$

Power Spectrum

Debiasing procedure

$$\underbrace{\hat{C}_{L}^{\hat{\alpha}\hat{\alpha}}}_{L} = \frac{1}{f_{sky}} \frac{1}{2L+1} \sum_{M} \hat{\alpha}_{LM} \hat{\alpha}_{LM}^{*} \\
\overline{\alpha}_{LM} \propto \frac{1}{\sigma_{L}^{-2}} \sum_{\ell\ell'mm'} a_{\ell m}^{E,obs} a_{\ell'm'}^{B,obs,*} K_{\ell\ell'mm'}^{LM}$$

Biased estimate of the Cosmic Birefringence power spectrum

$$\Box \quad \ell = \ell' \text{ signal}$$

$$\ell \neq \ell'$$
 signal from:

- not homogeneous noise
- lensing

CB signature:
$$\ell
eq \ell'$$

Required **debiasing** procedure ^[1]

$$C_L^{bias} = C_L^{bias,iso} + C_L^{bias,MC}$$

Analytic term evaluated from data

Bias term based on Monte Carlo simulations

$$\hat{C}_L^{\alpha\alpha} = C_L^{\hat{\alpha}\hat{\alpha}} - C_L^{bias}$$

Giorgia Zagatti

^[1] V. Gluscevic et al. (2012)

R

Analysis pipeline

CN simu the f	IB + noise data and lations, masked with iducial mask analysis	$\hat{C}_L^{lpha lpha}$	$= C_L^{\hat{\alpha}\hat{\alpha}} - C_L^{bias,is}$	$coments on C_L^{bias,MC}$
data			$\left(\begin{array}{c} C_L^{\hat{\alpha}\hat{\alpha}}, C_L^{bias, iso} \end{array}\right)$	
sim		$a_{\ell m}^E, a_{\ell m}^B$	$\begin{bmatrix} C_L^{\hat{\alpha}\hat{\alpha}}, C_L^{bias, iso} \\ C_L^{\hat{\alpha}\hat{\alpha}}, C_L^{bias, iso} \end{bmatrix}$	$ ightarrow C_L^{bias,MC}$
		$\hat{\alpha}_{LM}$	$\begin{array}{c} C_L^{\hat{\alpha}\hat{\alpha}}, C_L^{bias, iso} \\ C_L^{\hat{\alpha}\hat{\alpha}}, C_L^{bias, iso} \end{array} \text{-} \end{array}$	Set of fully de-biased simulations
	···· _/		···· _/	

AstroParticle Symposium 2024

Dataset and simulations

- Planck CMB maps at the Healpix resolution of NSIDE = 2048
- CMB maps cleaned using the component separation <u>commander</u> ^[2]
- Public Release 3 ^[3]: 300 CMB+noise simulations for half mission 1, half mission 2 and full mission data
- Public Release 4 ^[4]: 400 CMB+noise simulations for data split A, B and full mission data

^[2] Planck collaboration IV
 ^[3] Planck collaboration I
 ^[4] Planck collaboration LVII

Cosmic Birefringence

Planck - PR4

Full mission data

AstroParticle Symposium 2024

Cosmic Birefringence

Planck - PR4

Full mission data

- Cosmic Birefringence power spectra of both Planck data compatible with zero at 95% confidence level.
- Constraint on a scale invariant power spectrum in band powers:

$$\mathcal{A}^{\alpha\alpha} \sim 9.9 \times 10^{-3} deg^2$$

Map of the CB field

& CB-CMB cross correlations

Giorgia Zagatti

1200

NPIPE

NPIPE

1000 1250 1500

1000 1250 1500

AstroParticle Symposium 2024

Conclusions

- Development of a pipeline to estimate the spherical harmonic coefficients of the Cosmic Birefringence field
- Application of the pipeline to Planck data products to obtain the CB power spectrum
- CB-CMB crossspectra
- Expected an αB improvement of almost a factor of 1000 in the next decade

	NPIPE Commander
αT	8.27%
αE	79.37%
αB	98.75%
αα	84.85%

Planck sensitivity compared to forthcoming CMB experiments

Thank you

