CMB spectral distortions: past and future Alina Sabyr

with Colin Hill, Carlos Sierra, Jeffrey J. McMahon, Giulio Fabbian, Federico Bianchini

Paris-Saclay Astroparticle Workshop, 21/11/24

CMB spectral distortions: quick review

CMB spectral distortions: quick review

(figure adapted from Chluba+2021)

y-distortion:

- → known source: thermal Sunyaev-Zel'dovich effect (tSZ) – inverse Compton scattering of CMB photons on free, energetic electrons, primarily in galaxy clusters
- → late-time Universe
- → total thermal energy + mean temperature of electrons

CMB spectral distortions: current status

Upper limits from *COBE/FIRAS* (flew in **1990**'s!):

- → $\langle y \rangle$: < 15 x 10⁻⁶ (Fixsen+1996)
- → $\langle \mu \rangle$: < 90 x 10⁻⁶ (Fixsen+1996), < 47 x 10⁻⁶ (Bianchini & Fabbian 2022)

Why are there no other direct and recent constraints?

- → Need absolute temperature calibrated spectrum.
- → Astrophysical **foregrounds**.

Alina Sabyr, Columbia University

Abitbol+2017

SPECTER: An Instrument Concept for a Spectral Distortion Measurement with Enhanced Sensitivity.

with Carlos Sierra, Colin Hill, Jeffrey J. McMahon **arXiv:2409.12188**

<u>Key idea:</u>

Optimize **frequency bands** and their **individual sensitivities** to target the μ -distortion.

Ingredients:

- → Sensitivity calculator: **bolocalc-space**¹ (based on BoloCalc, Hill+2018)
 - HEMT amplifiers at v < 10 GHz; bolometers at v > 10 GHz.
- → Fisher-forecast set-up: sd_foregrounds_optimize² (modified version of sd_foregrounds, Abitbol+2017)
 - CMB signals: blackbody deviation, μ-distortion, y-distortion, rel. corr. to y-distortion.
 - Foregrounds: Galactic dust, cosmic infrared background, Galactic synchrotron, free-free, spinning dust, CO.
 - Total **16 free parameters.**
- → Optimization/robustness tests pipeline: specter_optimization³

Assess the set-up via **SNR** and **area** (i.e. cost)

All three codes publicly available on github! *Alina Sabyr, Columbia University*

¹<u>https://github.com/csierra2/bolocalc-space</u>

²<u>https://github.com/asabyr/sd_foregrounds_optimize</u>

³<u>https://github.com/asabyr/specter_optimization</u>

Ingredients:

- → Sensitivity calculator: **bolocalc-space**¹ (based on BoloCalc, Hill+2018)
 - **HEMT** amplifiers at v < 10 GHz; bolometers at v > 10 GHz.
- → Fisher-forecast set-up: sd_foregrounds_optimize² (modified version of sd_foregrounds, Abitbol+2017)
 - CMB signals: blackbody deviation, μ-distortion, y-distortion, rel. corr. to y-distortion.
 - Foregrounds: Galactic dust, cosmic infrared background, Galactic synchrotron, free-free, spinning dust, CO.
 - ◆ Total **16 free parameters.**
- → Optimization/robustness tests pipeline: specter_optimization³

Assess the set-up via **SNR** and **area** (i.e. cost)

All three codes publicly available on github! *Alina Sabyr, Columbia University* ¹<u>https://github.com/csierra2/bolocalc-space</u>
²<u>https://github.com/asabyr/sd_foregrounds_optimize</u>
³https://github.com/asabyr/specter_optimization

Ingredients:

- → Sensitivity calculator: **bolocalc-space**¹ (based on BoloCalc, Hill+2018)
 - **HEMT** amplifiers at v < 10 GHz; bolometers at v > 10 GHz.
- → Fisher-forecast set-up: sd_foregrounds_optimize² (modified version of sd_foregrounds, Abitbol+2017)
 - CMB signals: blackbody deviation, μ-distortion, y-distortion, rel. corr. to y-distortion.
 - Foregrounds: Galactic dust, cosmic infrared background, Galactic synchrotron, free-free, spinning dust, CO.
 - ◆ Total **16 free parameters.**
- → Optimization/robustness tests pipeline: specter_optimization³

Assess the set-up via **SNR** and **area** (i.e. cost)

All three codes publicly available on github!

Alina Sabyr, Columbia University

¹<u>https://github.com/csierra2/bolocalc-space</u>
²<u>https://github.com/asabyr/sd_foregrounds_optimize</u>
³<u>https://github.com/asabyr/specter_optimization</u>

(1) Find optimal frequency bands

- → Start with **narrow frequency bands**.
- → Combine and pick the most optimal band combination.

(1) Find optimal frequency bands

- → Start with **narrow frequency bands**.
- → Combine and pick the most optimal band combination.

(2) Optimize detector counts

>5 million Fisher calculations

- → Optimized set-up is **not a singular** best point!
- Configurations near 5σ are the most expensive!

parameter &	16-band optimized		34-band multichroic	
fiducial value	SNR	σ	SNR	σ
$\Delta_T = 1.2 \times 10^{-4}$	37157	3.2×10^{-9}	30378	4.0×10^{-9}
$\mu = 2 imes 10^{-8}$	5	4.0×10^{-9}	4.5	4.4×10^{-9}
$y = 1.77 \times 10^{-6}$	955	1.9×10^{-9}	807	2.2×10^{-9}
$k_{\rm B}T_{eSZ} = 1.245 \text{ keV}$	33	0.037	42	0.029

TABLE III. Forecasts for the four CMB parameters using the 16band optimized and 34-band multichroic set-ups assuming $t_{obs} = 1$ year. We list the fiducial values, SNRs, and the Fisher error bars.

parameter &	16-band optimized		34-band multichroic	
fiducial value	SNR	σ	SNR	σ
$\Delta_T = 1.2 \times 10^{-4}$	74313	1.6×10^{-9}	60757	2.0×10^{-9}
$\mu = 2 imes 10^{-8}$	10	2.0×10^{-9}	9	$2.2 imes 10^{-9}$
$y = 1.77 \times 10^{-6}$	1911	9.3×10^{-10}	1615	1.1×10^{-9}
$k_{\rm B}T_{eSZ} = 1.245 \text{ keV}$	67	0.019	85	0.015

TABLE IV. Same as Table III, but for $t_{obs} = 4$ years.

34-band multichroic: more frequency **resolution** at **no additional cost**!

Sky model robustness: to what extent do the results depend on the fiducial sky model?

- → Vary foreground spectral parameters (e.g., within 20%, ~16000 combinations)
- → In <1% of cases, SNR < 1σ
- → Similarly likely to get a **higher** SNR!
- → Higher frequency resolution + longer observation time → more robust to sky modeling assumptions
- 34-band multichroic + t_{obs}=4 years:
 < 1% chance of < 5σ detection!

A new constraint on the y-distortion with FIRAS

with Giulio Fabbian, Colin Hill, Federico Bianchini (Sabyr+in prep. 2024c, Fabbian+in prep. 2024)

A new constraint on the y-distortion with *FIRAS*

with Giulio Fabbian, Colin Hill, Federico Bianchini (**Sabyr**+in prep. 2024c, Fabbian+in prep. 2024) *Motivation:*

- (1) validate current Fisher forecasts (e.g., SPECTER, PIXIE, Voyage 2050)
- (2) compare analysis techniques (*pixel-by-pixel* vs. *frequency monopole*)

A new constraint on the y-distortion with FIRAS

with Giulio Fabbian, Colin Hill, Federico Bianchini (**Sabyr**+in prep. 2024c, Fabbian+in prep. 2024)

Motivation:

(1) validate current Fisher forecasts (e.g., SPECTER, PIXIE, Voyage 2050)

(2) compare analysis techniques (pixel-by-pixel vs. frequency monopole)

Ingredients:

- 1. <u>Sky model.</u> $I_{\nu}^{sky} = \Delta B_{\nu} + I_{\nu}^{y} + I_{\nu}^{\text{fg}}.$
- 2. FIRAS Covariance:

$$\begin{split} \mathbb{C}_{\nu p \nu' p'} &= \operatorname{Cov}(\hat{I}_{\nu p}^{\mathrm{FIRAS}}, \hat{I}_{\nu' p'}^{\mathrm{FIRAS}}) \\ &= C_{\nu \nu'} \left(\delta_{p p'} / N_p + \beta_p^k \beta_{p' k} + 0.04^2 \right) \text{ noise} \\ &+ S_{p \nu} S_{p' \nu'} \left(J_{\nu} J_{\nu'} + G_{\nu} G_{\nu} \delta_{\nu \nu'} \right) \text{ gain error} \\ &+ P_{\nu} P_{\nu'} \left(U^2 \delta_{p p'} / N_p + T^2 \right). \quad \text{systematics} \end{split}$$

3. FIRAS sky maps:

~68 GHz – 3 THz (Δv = 13 GHz, 210 frequency channels)

 $\sim 3.5^{\circ}$ resolution

preliminary

Frequency monopole – fitting sky-averaged spectrum *Pixel-by-pixel* – fitting spectra in each pixel

Data:

Frequency ranges:

- **v**₆₀₀: 27 channels, 95-626 GHz
- **v**₈₀₀: 36 channels, 95-626 GHz and 653-789 GHz

Three averaging methods for *frequency monopole*:

- **inv_cov**-inverse covariance (instrumental noise + systematics)
- **Inv_var** inverse variance (instrumental noise + systematics)
- **inv_cov_C** inverse covariance (instrumental noise)

Masks: P20, P40, P60

- \rightarrow Gaussian likelihood.
- → Covariance- frequency-frequency correlation from instrumental noise
- \rightarrow NUTS + emcee

Results from Mocks

Adopt **inv_var** method for the *frequency monopole*.

Adopt flat priors for the *pixel-by-pixel* method.

preliminary

Results from data: *frequency monopole*

Method comparison:

pixel-by-pixel –

~4x tighter constraints than from

the *frequency monopole*

Fisher forecast validation:

Great agreement (within ~10%) between Fisher forecasts and the results from *frequency monopole*!

preliminary

Interpretation:

Fabbian+in prep. 2024

Stay tuned!

Alina Sabyr, Columbia University

 10^{-1}

10¹

 $< T_e > [keV]$

Summary and future directions:

- → SPECTER can detect µ-distortion at 5σ (10σ) assuming t_{obs}=1 (4) year(s) after marginalizing over foregrounds!
- → 16-bands spanning 1-2000 GHz with 1046 total detectors & three separate instruments.
- \rightarrow Can perform well even if the true sky differs from the fiducial (!)
- → **Fisher** forecast approach **validated directly with** *FIRAS* data!
- → **Better constraints** can be achieved using spatial information (i.e. *pixel-by-pixel* method).
- → Both analysis techniques need to be applied (**robustness** & different **advantages**).
- → Proof of principle: a new constraint on $\langle y \rangle \rightarrow$ can rule out some hydro sims!

What next?

- → The cost is driven by the **lowest-frequency bands.** Can we obtain 1.5-3.5 GHz absolute temperature calibrated observations from the **ground**?
- → Further development of the **forecast set-up** (e.g. sky models).
- → **Prototype** y-distortion mission.