

Astroparticule symposium 2024

A Separate Universe approach to multifield inflation

Hugo Holland

Institut d'astrophysique Spatiale

Under the supervision of JULIEN GRAIN

November 21, 2024

1 [Introduction and Motivations](#page-1-0)

2 [Stochastic inflation & Separate Universe](#page-5-0)

3 [Separate Universe approach in multifield](#page-11-0) [theories](#page-11-0)

4 [Gauge fixing and Mukhanov-Sasaki](#page-24-0) [variables](#page-24-0)

IAS CNIS **Introduction and Motivations**

- Conceptual problems
- \rightarrow No origin for the initial conditions
- \rightarrow Horizon problem

université

- \rightarrow Flatness problem
- \rightarrow Scale invariance origin
- \rightarrow origin of CMB and LSS
- ⇒ Accelerated expansion = **Inflation**

Figure: PBH as DM constraints, [Carr+ 20](https://arxiv.org/abs/2002.12778)

- Dark Matter = Primordial Black Holes ?
- Need for a boost in the power spectrum
- Need for a inflection point in the potential the inflaton
- Multifield inflation model

Figure: PBH as DM constraints, [Carr+ 20](https://arxiv.org/abs/2002.12778)

- Dark Matter = Primordial Black Holes ?
- Need for a boost in the power spectrum
- Need for a inflection point in the potential the inflaton
- Multifield inflation model

Figure: Inflection point for single field equation [Bauman TASI lectures](https://arxiv.org/abs/0907.5424)

- \Rightarrow Produce even more large scale fluctuations
- \Rightarrow Large fluctuations have an effect on collapsed structures
	- Best formalism for this : Stochastic inflation [V.Vennin 22](https://arxiv.org/abs/2009.08715)

1 [Introduction and Motivations](#page-1-0)

2 [Stochastic inflation & Separate Universe](#page-5-0)

- 3 [Separate Universe approach in multifield](#page-11-0) [theories](#page-11-0)
- 4 [Gauge fixing and Mukhanov-Sasaki](#page-24-0) [variables](#page-24-0)

Sub and Super horizon modes

• *^H* : Hubble radius decreases during inflation

IAS.

cnrs)

- Modes *^k* start under the horizon : **subhorizon**
- They the cross the horizon : **superhorizon**
- Treat sub horizon modes and super horizon modes differently :

When sub horizon modes cross the horizon they act as a stochastic noise in the dynamics of the super horizon modes

Figure: Solution to the horizon problem via inflation. [Bauman TASI lectures](https://arxiv.org/abs/0907.5424)

 \Rightarrow Langevin equation

With ξ_{ϕ} a "noise" depending on the sub horizon scales \rightarrow

 $\dot{\phi}_{IB} = -\frac{\partial V}{\partial \phi} + \xi_{\phi}$

Non linearity comes from $\frac{\partial V}{\partial x}$ $\overline{\partial \phi}$.

Figure: Solution to the horizon problem via inflation.[Bauman TASI lectures](https://arxiv.org/abs/0907.5424)

linear

 \Rightarrow Langevin equation

Figure: Solution to the horizon problem via inflation.[Bauman TASI lectures](https://arxiv.org/abs/0907.5424)

$$
\dot{\phi}_{\text{IR}} = -\frac{\partial V}{\partial \phi} + \xi_{\phi}
$$

With ξ_{ϕ} a "noise" depending on the sub horizon scales \rightarrow linear ∂*V*

Non linearity comes from $\overline{\partial}\overline{\phi}$.

- Note that there are no gradients here, so **no spatial interaction**
- Each Hubble patch evolves in time independently from other \Rightarrow Seperate Universe Artigas + 22 Pattison + 19

The Separate Universe approach

- In a Hubble patch the long wavelength modes eventually evolve as the background
- GOAL : evolve the superhorizon modes non linearly in homogeneous patches **VS** evolve the subhorizon modes linearly in non homogeneous patches
- When are these two operations compatible ?

Figure: Quantum to classical transition of

 $|AS \cdot$

The Separate Universe approach

- In a Hubble patch the long wavelength modes eventually evolve as the background
- GOAL : evolve the superhorizon modes non linearly in homogeneous patches **VS** evolve the subhorizon modes linearly in non homogeneous patches
- When are these two operations compatible ?
- \Rightarrow Proven to work at leading order in perturbation theory for single field inflation [Artigas+ 22](https://arxiv.org/abs/2110.11720) [Pattison+ 19](https://arxiv.org/abs/1905.06300)
- \Rightarrow Proof doesn't tell **how** to execute this matching correctly \rightarrow if you gauge fix in SU you can't guaranty a good gauge choice in CPT

Figure: Quantum to classical transition of

1 [Introduction and Motivations](#page-1-0)

2 [Stochastic inflation & Separate Universe](#page-5-0)

Stochastic inflation :

Stochastic inflation as I have presented it : suppose Slow Roll, de Sitter universe \Rightarrow simple Langevin equation.

NOT always the case. No SR approximation \Rightarrow no attractor solution \Rightarrow need to keep the complete phase space, i.e. the associated momenta to our field(s) \Rightarrow Hamiltonian theory to keep track of everything.

Stochastic inflation :

Stochastic inflation as I have presented it : suppose Slow Roll, de Sitter universe \Rightarrow simple Langevin equation.

NOT always the case. No SR approximation \Rightarrow no attractor solution \Rightarrow need to keep the complete phase space, i.e. the associated momenta to our field(s) \Rightarrow Hamiltonian theory to keep track of everything. **Multifield models :**

Phenomenology

- PBH,
- Comological collider,
- Reheating: coupling inflaton to Standard model.

Stochastic inflation :

Cnrs

 $[AS]$

Stochastic inflation as I have presented it : suppose Slow Roll, de Sitter universe \Rightarrow simple Langevin equation.

NOT always the case. No SR approximation \Rightarrow no attractor solution \Rightarrow need to keep the complete phase space, i.e. the associated momenta to our field(s) \Rightarrow Hamiltonian theory to keep track of everything. **Multifield models :**

Phenomenology

- PBH,
- Comological collider,
- Reheating: coupling inflaton to Standard model.

Theory

- EFT of inflation,
- non linear couplings,
- non minimally coupled to gravity,
- \Rightarrow coupling metric for a covariant theory.

IAS **Cnrs Multifield inflation & ADM**

Start from the most generic possible Lagrangian for multifield models of inflation, with $I, J \in \llbracket 1, n \rrbracket$

$$
S=\int d^4x\sqrt{-g}\big[\frac{1}{2}M_{\rho l}^2\mathcal{R}-\frac{1}{2}g^{\mu\nu}G_{l\nu}\partial_{\mu}\phi^{\prime}\partial_{\nu}\phi^{\prime}-V(\phi^{\prime})\big]
$$

[Langlois+ 2008](https://arxiv.org/abs/0801.1085), [Linde 1997](https://inspirehep.net/literature/358183), [Kaiser+ 2012](https://arxiv.org/abs/1210.7487) ...

Make use of the ADM formalism:

$$
ds^2 = -N^2(\tau,\vec{x})d\tau^2 + \gamma_{ij}(\tau,\vec{x})\big[dx^i + N^i(\tau,\vec{x})d\tau\big]\big[dx^j + N^i(\tau,\vec{x})d\tau\big]
$$

IAS -(cnrs) **Multifield inflation & ADM**

Start from the most generic possible Lagrangian for multifield models of inflation, with $I, J \in \llbracket 1, n \rrbracket$

$$
S=\int d^4x\sqrt{-g}\big[\frac{1}{2}M_{\rho l}^2\mathcal{R}-\frac{1}{2}g^{\mu\nu}G_{l\nu}\partial_{\mu}\phi^{\prime}\partial_{\nu}\phi^{\prime}-V(\phi^{\prime})\big]
$$

[Langlois+ 2008](https://arxiv.org/abs/0801.1085), [Linde 1997](https://inspirehep.net/literature/358183), [Kaiser+ 2012](https://arxiv.org/abs/1210.7487) ...

Make use of the ADM formalism:

$$
ds^2 = -N^2(\tau,\vec{x})d\tau^2 + \gamma_{ij}(\tau,\vec{x})\big[dx^i + N^i(\tau,\vec{x})d\tau\big]\big[dx^j + N^i(\tau,\vec{x})d\tau\big]
$$

Compute the background equations, do some perturbation theory for full dynamics or for SU:

$$
\phi' = \bar{\phi}' + \delta\phi', \quad N = \bar{N} + \delta N, \quad N' = \delta N', \quad \gamma_{ij} = \bar{\gamma}_{ij} + \delta\gamma_{ij}
$$

OR

$$
\phi' = \overline{\phi}' + \overline{\delta}\phi', \quad N = \overline{N} + \overline{\delta N}, \quad N' = \overline{\delta N'}, \quad \gamma_{ij} = \overline{\gamma}_{ij} + \overline{\delta \gamma}_{ij}
$$

We write the hamiltonian action and separate it in background, first and second order.

$$
S = \int d\tau \int d^3x \left(\pi_i \dot{\phi}^i + \pi^{ij} \dot{\gamma}_{ij} - N \mathcal{C} - N^i \mathcal{D}_i \right) = S^{(0)} + S^{(1)} + S^{(2)}.
$$

With $\mathcal{D}_i=\mathcal{D}_i^{(1)}$ the diffeormorphism constraint, $\mathcal{C}=\mathcal{C}^{(0)}+\mathcal{C}^{(1)}\!+\mathcal{C}^{(2)}\,$ the scalar constraint.

We write the hamiltonian action and separate it in background, first and second order.

$$
S = \int d\tau \int d^3x \left(\pi_i \dot{\phi}^i + \pi^{ij} \dot{\gamma}_{ij} - N \mathcal{C} - N^i \mathcal{D}_i \right) = S^{(0)} + S^{(1)} + S^{(2)}.
$$

With $\mathcal{D}_i=\mathcal{D}_i^{(1)}$ the diffeormorphism constraint, $\mathcal{C}=\mathcal{C}^{(0)}+\mathcal{C}^{(1)}+$ $\left(\mathcal{C}^{(2)}\right)$ the scalar constraint.

$$
\mathcal{C}^{(2)\phi} \supset \frac{1}{4v} G^{\mu\nu}, \kappa \pi_{J} (\delta \phi^{\kappa} \delta \pi^{\star}_{I} + \text{c.c.})
$$

 \Rightarrow not explicitly covariant expression despite a covariant theory \Rightarrow Because $(\delta\phi',\delta\pi_l)$ themselves are not covariant in the phase space. **Adiabatic and entropic directions**

- Isolate the adiabatic direction in order to (almost) recover single field dynamics
- \rightarrow rotate these covariant variables to define the adiabatic and entropic directions. [Pinol+ 2020](https://arxiv.org/abs/2008.07497)

 $AS -$

Cnrs

$$
D_t e_a^j = \Omega_a{}^b e_a^j
$$

\n
$$
\Omega = \begin{pmatrix}\n0 & \omega_1 & 0 & \cdots & 0 \\
-\omega_1 & 0 & \omega_2 & \cdots & 0 \\
0 & -\omega_2 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & -\omega_{n-1} & 0\n\end{pmatrix}
$$

\n
$$
Q_a \equiv e_i^a Q^i, \quad P_b \equiv e_j^b P_J
$$

Figure: The adiabatic and entropic directions for two fields [Gordon+ 2000](https://arxiv.org/abs/astro-ph/0009131)

Remark n°1 : Note that we can do another complete canonical transform again but we don't need to since we have the equations of motion we can project on the right directions

Remark n°2 : We define the adiabatic and entropic directions after the first canonical transform simply for convenience.

Compute equations of motion for $\{\delta\phi'/\mathcal{Q}'/\mathcal{Q}_c,\delta\pi_\jmath/\mathcal{P}_J/\mathcal{P}_b,\delta\gamma_1,\delta\pi_1,\delta\gamma_2,\delta\pi_2\}$ and $\{\bar{\delta\phi}'/\bar{\cal Q}'/\bar{\cal Q}_c,\bar{\delta\pi}_\text{J}/\bar{\cal P}_\text{J}/\bar{\cal P}_b,\bar{\delta\gamma}_1,\bar{\delta\pi}_1\}$

Compare them at large scales and check when they match. Next step : Verify whether we have $\delta N = \bar{\delta N}$ The separate universe approach is valid if :

$$
\left(\frac{k}{aH}\right)^2\ll 3\left(1-\epsilon_1\right), \quad \left(\frac{k}{aH}\right)^2\ll 16\left(1-\epsilon_1\right), \quad \left|\left(\frac{k}{aH}\right)^2G_{|U|}\right|\ll H^{-2}\left|\rho_{|U|}\right|
$$

Compute equations of motion for $\{\delta\phi'/\mathcal{Q}'/\mathcal{Q}_c,\delta\pi_\jmath/\mathcal{P}_J/\mathcal{P}_b,\delta\gamma_1,\delta\pi_1,\delta\gamma_2,\delta\pi_2\}$ and $\{\bar{\delta\phi}'/\bar{\cal Q}'/\bar{\cal Q}_c,\bar{\delta\pi}_\text{J}/\bar{\cal P}_\text{J}/\bar{\cal P}_b,\bar{\delta\gamma}_1,\bar{\delta\pi}_1\}$

Compare them at large scales and check when they match. Next step : Verify whether we have $\delta N = \bar{\delta N}$ The separate universe approach is valid if :

$$
\left(\frac{k}{aH}\right)^2\ll 3\left(1-\epsilon_1\right), \quad \left(\frac{k}{aH}\right)^2\ll 16\left(1-\epsilon_1\right), \quad \left|\left(\frac{k}{aH}\right)^2G_{|U|}\right|\ll H^{-2}\left|\rho_{|U|}\right|
$$

IAS cnrs) **Role of dynamics and adiabatic direction**

The equations of motion of the adiabatic and entropic directions are :

$$
\dot{\mathcal{Q}}_c = \delta_{c\sigma} \dot{\sigma} \left(\frac{\delta N}{N} - \frac{\sqrt{3}}{2} \frac{\delta \gamma_1}{v^{2/3}} \right) + \frac{N}{v} P_c - \Omega_a^c \mathcal{Q}_a
$$
\n
$$
\dot{\mathcal{P}}_c = - \delta N v V_{,c} + N v^{1/3} \left(k^2 \delta ac + V_{,ac} - \frac{v^2}{N^2} R_{a\sigma\sigma c} \dot{\sigma}^2 \right) \mathcal{Q}_a + N \frac{\sqrt{3}}{2} v^{1/3} V_{,c} \delta \gamma_1
$$
\n
$$
- \frac{v}{N} \delta_{c\sigma} \dot{\sigma} \delta N_1 - \Omega^c{}_a \mathcal{P}_a
$$

$|AS|$ cnrs) **Role of dynamics and adiabatic direction**

The equations of motion of the adiabatic and entropic directions are :

$$
\dot{Q}_{c} = \delta_{c\sigma}\dot{\sigma}\left(\frac{\delta N}{N} - \frac{\sqrt{3}}{2}\frac{\delta \gamma_{1}}{v^{2/3}}\right) + \frac{N}{v}P_{c} - \Omega_{a}^{c}Q_{a}
$$
\n
$$
\dot{P}_{c} = -\delta N vV_{,c} + Nv^{1/3}\left(k^{2}\delta ac + V_{,ac} - \frac{v^{2}}{N^{2}}R_{a\sigma\sigma c}\dot{\sigma}^{2}\right)Q_{a} + N\frac{\sqrt{3}}{2}v^{1/3}V_{,c}\delta\gamma_{1}
$$
\n
$$
-\frac{v}{N}\delta_{c\sigma}\dot{\sigma}\delta N_{1} - \Omega_{a}^{c}P_{a}
$$

 \Rightarrow Almost single field dynamics for the adiabatic direction : extra source term that comes from the coupling to the first entropic direction. The effective mass condition is the only one that is affected

$$
\left| \left(\frac{k}{aH} \right)^2 G_{1/2} \right| \ll H^{-2} |\rho, \sqrt{aH}| \Leftrightarrow \left(\frac{k}{aH} \right)^2 \delta_{ac} \ll H^{-2} \left| V, \sqrt{a}c - \frac{v^2}{N^2} R_{a\sigma\sigma c} \dot{\sigma}^2 \right|
$$

1 [Introduction and Motivations](#page-1-0)

2 [Stochastic inflation & Separate Universe](#page-5-0)

3 [Separate Universe approach in multifield](#page-11-0) [theories](#page-11-0)

Next step : gauge fixing both approaches \Rightarrow write gauge invariant equations of motion : The Mukhanov-Sasaki variables

$$
Q_a = e_a^I \left(\delta \phi^I + \frac{M_{\rho I}^2 G^{IJ} \pi_J}{\sqrt{6} \nu^{5/3} \theta} (\sqrt{2} \delta \gamma_1 - \delta \gamma_2) \right), \quad \bar{Q}_a = e_a^I \left(\delta \bar{\phi}^I + \frac{M_{\rho I}^2 G^{IJ} \pi_J}{\sqrt{3} \bar{\nu}^{5/3} \bar{\theta}} \delta \bar{\gamma}_1 \right)
$$

$|AS \cdot$ (cnrs) **Mukhanov Sasaki variables**

Next step : gauge fixing both approaches \Rightarrow write gauge invariant equations of motion : The Mukhanov-Sasaki variables

$$
Q_a = e'_a \left(\delta \phi' + \frac{M_{\rho I}^2 G^{U} \pi_J}{\sqrt{6} \nu^{5/3} \theta} (\sqrt{2} \delta \gamma_1 - \delta \gamma_2) \right), \quad \bar{Q}_a = e'_a \left(\delta \bar{\phi}' + \frac{M_{\rho I}^2 G^{U} \pi_J}{\sqrt{3} \bar{\nu}^{5/3} \bar{\theta}} \delta \bar{\gamma}_1 \right)
$$

$$
\ddot{Q}_{\sigma} + 3H\dot{Q}_{\sigma} + \left[k^2 + m_{\sigma\sigma} - \omega_1^2 - \frac{1}{M_{\rho l}^2 a^3} \partial_l \left(\frac{a^3 \dot{\sigma}^2}{H}\right)\right] Q_{\sigma} = 2\partial_l(\omega_1 Q_1) - 2\left(\frac{V_{,\sigma}}{\dot{\sigma}} + \frac{\dot{H}}{H}\right)\omega_1 Q_1
$$

$$
\ddot{Q}_{\alpha} + (3H\delta_{\alpha\beta} + 2\Omega_{\alpha\beta})\dot{Q}_{\beta} + \left[k^2\delta_{\alpha\beta} + m^2_{\alpha\beta} + 3H\Omega_{\alpha\beta} + \dot{\Omega}_{\alpha\beta}\right]Q_{\beta} =
$$

$$
\delta_{\alpha1}2\left[\left(\frac{V_{,\sigma}}{\dot{\sigma}} + \frac{\dot{H}}{H}\right)\omega_1Q_{\sigma} + \partial_t(\omega_1Q_{\sigma})\right]
$$

$$
m^2_{\alpha\beta} = V_{;\alpha\beta} - R_{\alpha\sigma\sigma\beta} + \Omega^2_{\alpha\beta}
$$

IAS cnrs) **Mukhanov Sasaki variables**

Next step : gauge fixing both approaches \Rightarrow write gauge invariant equations of motion : The Mukhanov-Sasaki variables

$$
Q_a = e_a^{\prime} \left(\delta \phi^{\prime} + \frac{M_{\rho \prime}^2 G^{\prime \prime} \pi_J}{\sqrt{6} \nu^{5/3} \theta} (\sqrt{2} \delta \gamma_1 - \delta \gamma_2) \right), \quad \bar{Q}_a = e_a^{\prime} \left(\delta \bar{\phi}^{\prime} + \frac{M_{\rho \prime}^2 G^{\prime \prime} \pi_J}{\sqrt{3} \bar{\nu}^{5/3} \bar{\theta}} \delta \bar{\gamma}_1 \right)
$$

$$
\ddot{\overline{Q}}_{\sigma} + 3H\dot{\overline{Q}}_{\sigma} + \left[m_{\sigma\sigma} - \omega_1^2 - \frac{1}{M_{\rho l}^2 a^3} \partial_t \left(\frac{a^3 \dot{\sigma}^2}{H}\right)\right] \overline{Q}_{\sigma} = 2\partial_t(\omega_1 \overline{Q}_1) - 2\left(\frac{V_{,\sigma}}{\dot{\sigma}} + \frac{\dot{H}}{H}\right)\omega_1 \overline{Q}_1 + \frac{\sqrt{\frac{\varepsilon}{2}}}{2} \eta M_{\rho l} H^2 \overline{D}^{(1)}
$$

$$
\ddot{\overline{Q}}_{\alpha} + (3H\delta_{\alpha\beta} + 2\Omega_{\alpha\beta})\dot{\overline{Q}}_{\beta} + \left[m_{\alpha\beta}^{2} + 3H\Omega_{\alpha\beta} + \dot{\Omega}_{\alpha\beta}\right]\overline{Q}_{\beta} =
$$
\n
$$
\delta_{\alpha1}2\left[\left(\frac{V_{,\sigma}}{\dot{\sigma}} + \frac{\dot{H}}{H}\right)\omega_{1}\overline{Q}_{\sigma} + \partial_{t}(\omega_{1}\overline{Q}_{\sigma})\right] + \frac{2\sqrt{2\varepsilon}H M_{\rho}(\omega_{1}\delta_{1c}\overline{D}^{(1)})}{m_{\alpha\beta}^{2}}\right]
$$

 \Rightarrow Only works if we impose a "diffeomorphism constraint" in SU.

- The SU approach works as long as we are at a big enough scale **and** our fields are heavy enough
- Works in all gauges if we start from CPT and go to large scales
- Doesn't necessarily work if we try to gauge fix directly in SU
- **next steps :** go beyond the leading order, allow the perturbation to evolve non linearly as well ⇒ order three Hamiltonian theory.
- **Large deviation principle** in inflation → analytical asymptotical power spectrum in stochastic inflation
- **Long term goals :** find observables from multifield stochastic inflation models.

Thank You for listening

CPT Spatially flat gauge : • $\delta \gamma_1 = \delta \gamma_2 = 0$ \Rightarrow = $\delta \gamma_1 = \delta \gamma_2 = 0$ $\Rightarrow \frac{\delta N}{N}$ $\frac{\delta N}{N} = -\frac{\dot{\sigma}\delta\sigma}{N\theta}$ *N*θ **SU** Spatially flat gauge : • $\bar{\delta\gamma}_1 = 0$ \Rightarrow = $\dot{\delta\gamma_1} = 0$ $\Rightarrow \frac{\delta \bar{N}}{N}$ $\frac{\partial N}{N} = -\frac{2}{3}$ 3 $M_{p_i}^2$ θ^2 $\int \dot{\sigma}$ $\frac{\partial}{\partial \nu} \delta \bar{\pi}_{\sigma} + V,_{c} \bar{\delta}_{c}$ \setminus Both gauges are properly defined, **BUT** clear discrepancy because we don't have δ*N* $\frac{\delta N}{N} = \frac{\bar{\delta N}}{N}$ $\frac{m}{N}$.

A proper spatially flat gauge fixing in the SU framework does not lead to a spatially flat gauge fixed CPT approach taken to large scales.

IAS **Cnrs uniform expansion gauge**

CPT

Uniform expansion gauge :

$$
\bullet\ \delta\gamma_1=0,\ \delta N_1=0
$$

 \Rightarrow = $\dot{\delta \gamma}_1 = 0$

• Still one unfixed gauge mode

$$
\Rightarrow \frac{\delta N}{N} = -\frac{2}{3} \frac{M_{pl}^2}{\theta^2} \left(\frac{\dot{\sigma}}{vN} \delta \pi_{\sigma} + V_{,\sigma} \delta_c \right) - \frac{2 M_{pl}^4 k^2}{3 \sqrt{6} v^4 / ^3 \theta^2} \delta \gamma_2
$$

SU

Uniform expansion gauge :

•
$$
\vec{\delta \gamma}_1 = 0
$$

\n $\Rightarrow = \vec{\delta \gamma}_1 = 0$
\n $\Rightarrow \frac{\vec{\delta N}}{N} = -\frac{2}{3} \frac{M_{pl}^2}{\theta^2} \left(\frac{\dot{\sigma}}{vN} \delta \bar{\pi}_\sigma + V_{,\sigma} \bar{\delta}_c \right)$

The CPT framework is not completely gauge fixed, **BUT** we have matched two gauge fixing procedures at l

large scales : δ N *N* = $\overline{\delta N}$ *N* .

Same effort but in Jordan Frame

We know that such models are classically equivalent to multifield models with $G^{\prime\prime}=\delta^{\prime\prime}$ but with non minimal couplings to gravity. [Kaiser 2010](https://arxiv.org/abs/1003.1159) [Geller+ 2022](https://arxiv.org/abs/2205.04471) Proceed with the same computations \Rightarrow we get a fourth condition which can be seen as a derivative w.r.t $\delta\phi'$ of the third condition.

Where should we coarse grain ?

We have coarse grained our theory at hubble scale \Rightarrow not a problem as long as SR because of scale invariance. What if we do not have scale invariance (\rightarrow often happens in multifield models)? \Rightarrow coarse grain at a different scale : at adiabatic effective mass scale ?

In langevin equation : what if ξ_{ϕ} can evolve non lienarly as well?

⇒ need for third order Hamiltonian.

Questions and more applications of said hamiltonian :

- How/where to coarse grain if we want to do SU : sub horizon and superhorizon scales mix
- How will gauge fixing work in this approach, even without going to SU. Already very technical at second order [Artigas+ 2023](https://arxiv.org/abs/2309.17184)
- Recently : many debates on loop corrections in inflation with different results in different gauges \rightarrow no gauge fixing *a priori* so could contribute to this discussion
- Same story for the total derivatives in this debate : not an issue in Hamiltonian theory
- backreaction of IR modes on IJV modes

Once all of this is done, we are only half way : still need to solve the Langevin equation and make observanble predictions.

$|AS|$ **CNLS Third order hamiltonian**

F (3)

We limited ourselves to linear evolution for the sub horizon modes, i.e. the second order hamiltonian \rightarrow lets go one step further : ongoing work with Matteo Braglia, Julien Grain and Lucas Pinol.

A few preliminary steps : Find gauge invariant variables at second order, compute constraints at third order.

$$
\delta \phi' = Q' - \frac{1}{2} \Gamma_{JK}' Q^{J} Q^{K} + \frac{1}{3} \left(\Gamma_{JK}' \Gamma_{LM}^{J} - \frac{1}{2} \Gamma_{MK,L}' \right) Q^{K} Q^{L} Q^{M}
$$
\n
$$
\delta \pi_{I} = P_{I} + \Gamma_{IJ}^{K} \bar{\pi}_{K} Q^{J} + \Gamma_{IJ}^{K} P_{K} Q^{J} + \frac{1}{2} \left(\Gamma_{IJ,K}^{S} - \Gamma_{JI}^{S} \Gamma_{JK}^{R} + \Gamma_{IJ}^{R} \Gamma_{BK}^{S} \right) \bar{\pi}_{S} Q^{J} Q^{K}
$$
\n
$$
+ \left(3 \Gamma_{JM,L}^{K} + \Gamma_{JI}^{K} \Gamma_{LM}^{R} + 3 \Gamma_{IM}^{R} \Gamma_{RL}^{K} \right) P_{K} Q^{L} Q^{M}
$$
\n
$$
+ \left(\Gamma_{IJ,ML}^{S} - 2 \Gamma_{K,J}^{S} \Gamma_{LM}^{K} + 3 \Gamma_{KM,L}^{S} \Gamma_{L}^{K} - \Gamma_{IJ,K}^{S} \Gamma_{LM}^{K} + 2 \Gamma_{IJ,L}^{K} \Gamma_{KM}^{S}
$$
\n
$$
+ \Gamma_{JM,L}^{K} \Gamma_{IK}^{S} + \Gamma_{JI}^{K} \Gamma_{LM}^{R} \Gamma_{KJ}^{S} - 2 \Gamma_{IJ}^{K} \Gamma_{KH}^{S} \Gamma_{ML}^{R} + \Gamma_{IJ}^{K} \Gamma_{KM}^{R} \Gamma_{RL}^{S}
$$
\n
$$
+ 2 \Gamma_{LM}^{K} \Gamma_{JI}^{S} \Gamma_{KJ}^{R} + \Gamma_{LM}^{K} \Gamma_{IK}^{R} \Gamma_{RJ}^{S} + \Gamma_{LM}^{K} \Gamma_{IJ}^{R} \Gamma_{BK}^{S} \right) Q^{L} Q^{M} Q^{J} \bar{\pi}_{S}
$$
\n
$$
\left(\delta \phi^{I} \mathcal{P}_{I} t \right) = \delta \phi^{I} \mathcal{P}_{I} + \frac{1}{2} \Gamma_{IJ}^{K} \pi_{K} \delta \phi^{I} \delta \phi^{J} + \frac{1}{2} \Gamma_{IJ}^{K} \mathcal{P}_{K} \delta \phi^{I} \delta \phi^{J} + \frac{1}{6} \left(\Gamma_{IJ}^{K} + \Gamma_{LI}^{K} \Gamma_{IJ}^{R} \right)
$$

IAS -

The large deviation principle : often used in particle physics to quantify the probability of rare events in stochastic processes by describing the probability as a decaying exponential with a rate function. See review [Touchette 2008](https://arxiv.org/abs/0804.0327)

Used in cosmology before, for Large Scale Structure [Bernardeau+ 2015](https://arxiv.org/abs/1511.08641), and in soft de Sitter for inflation [Cohen+ 2022](https://arxiv.org/abs/2212.02535).

Our goal : solve stochastic inflation equations analytically, albeit asymptotically. **e.g:** do this in USR. Other possibility : find the asymptotical PDF for the anisotropic stress. In [Grain+ 2020](https://arxiv.org/abs/2005.04222), only second order moments were computed, we'd go one step further.