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Introduction and Motivations

• Conceptual problems

→ No origin for the initial conditions

→ Horizon problem

→ Flatness problem

→ Scale invariance origin

→ origin of CMB and LSS

⇒ Accelerated expansion = Inflation
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PBH = DM ?

Figure: PBH as DM constraints, Carr+ 20

• Dark Matter = Primordial Black Holes ?

• Need for a boost in the power spectrum

• Need for a inflection point in the potential the

inflaton

• Multifield inflation model

Figure: Inflection point for single field equation

Bauman TASI lectures

⇒ Produce even more large scale fluctuations

⇒ Large fluctuations have an effect on collapsed

structures

• Best formalism for this : Stochastic inflation

V.Vennin 22
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Sub and Super horizon modes

• H : Hubble radius decreases during inflation

• Modes k start under the horizon : subhorizon

• They the cross the horizon : superhorizon

• Treat sub horizon modes and super horizon

modes differently :

When sub horizon modes cross the horizon they

act as a stochastic noise in the dynamics of the

super horizon modes
Figure: Solution to the horizon problem via inflation.

Bauman TASI lectures
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Stochastic inflation

Figure: Solution to the horizon problem via

inflation.Bauman TASI lectures

⇒ Langevin equation

ϕ̇IR = −∂V

∂ϕ
+ ξϕ

With ξϕ a ”noise” depending on the sub horizon scales →
linear

Non linearity comes from
∂V

∂ϕ
.

• Note that there are no gradients here, so no spatial

interaction

• Each Hubble patch evolves in time independently from

other ⇒ Seperate Universe Artigas+ 22 Pattison+ 19
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The Separate Universe approach

Figure: Quantum to classical transition of

fluctuations Artigas Grav&Cosmo 2024

• In a Hubble patch the long wavelength modes eventually evolve as the

background

• GOAL : evolve the superhorizon modes non linearly in homogeneous

patches VS evolve the subhorizon modes linearly in non

homogeneous patches

• When are these two operations compatible ?

⇒ Proven to work at leading order in perturbation theory for single field

inflation Artigas+ 22 Pattison+ 19

⇒ Proof doesn’t tell how to execute this matching correctly → if you

gauge fix in SU you can’t guaranty a good gauge choice in CPT
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Hamiltonian approach & multifield inflation

Stochastic inflation :

Stochastic inflation as I have presented it : suppose Slow Roll, de Sitter universe ⇒ simple Langevin

equation.

NOT always the case. No SR approximation ⇒ no attractor solution ⇒ need to keep the complete phase

space, i.e. the associated momenta to our field(s) ⇒ Hamiltonian theory to keep track of everything.

Multifield models :

Phenomenology

• PBH,

• Comological collider,

• Reheating : coupling inflaton to Standard model.

Theory

• EFT of inflation,

• non linear couplings,

• non minimally coupled to gravity,

⇒ coupling metric for a covariant theory.
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Multifield inflation & ADM

Start from the most generic possible Lagrangian for multifield models of inflation, with I,J ∈ J1, nK

S =

∫
d4x

√
−g

[1

2
M2

plR− 1

2
gµνGIJ∂µϕ

I∂νϕ
J − V(ϕI)

]
Langlois+ 2008, Linde 1997, Kaiser+ 2012 ...

Make use of the ADM formalism:

ds2 = −N2(τ, x⃗)dτ 2 + γij(τ, x⃗)
[
dx i + N i(τ, x⃗)dτ

][
dx j + N j(τ, x⃗)dτ

]

Compute the background equations, do some perturbation theory for full dynamics or for SU:

ϕI = ϕ̄I + δϕI, N = N̄ + δN, N i = δN i , γij = γ̄ij + δγij

OR

ϕI = ϕ̄I + δ̄ϕ
I
, N = N̄ + δ̄N, N i = δ̄N

i
, γij = γ̄ij + δ̄γ ij
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Hamiltonian CPT

We write the hamiltonian action and separate it in background, first and second order.

S =

∫
dτ

∫
d3x

(
πIϕ̇

I + πij γ̇ij − NC − N iDi

)
= S(0) + S(1) + S(2).

With Di = D(1)
i the diffeormorphism constraint, C = C(0) + C(1)+ C(2) the scalar constraint.

C(2)ϕ ⊃ 1

4v
GIJ ,K πJ

(
δϕKδπ⋆

I + c.c.
)

⇒ not explicitly covariant expression despite a covariant theory

⇒ Because (δϕI, δπI) themselves are not covariant in the phase space.
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Adiabatic and entropic directions

• Isolate the adiabatic direction in order to (almost)

recover single field dynamics

→ rotate these covariant variables to define the

adiabatic and entropic directions. Pinol+ 2020

Dt e
I
a =Ωa

beI
a

Ω =


0 ω1 0 · · · 0

−ω1 0 ω2 · · · 0

0 −ω2 0 · · · 0
...

. . .
. . .

. . .
...

0 0 · · · −ωn−1 0


Qa ≡ ea

I QI, Pb ≡ eb
JPJ

Figure: The adiabatic and entropic directions for two fields

Gordon+ 2000

Remark n°1 : Note that we can do another complete canonical transform

again but we don’t need to since we have the equations of motion we can

project on the right directions

Remark n°2 : We define the adiabatic and entropic directions after the first

canonical transform simply for convenience.
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Validity conditions for SU
Compute equations of motion for {δϕI/QI/Qc, δπJ/PJ/Pb, δγ1, δπ1, δγ2, δπ2} and

{δ̄ϕI
/Q̄I/Q̄c, δ̄πJ/P̄J/P̄b, δ̄γ1, δ̄π1}

Compare them at large scales and check when they match. Next step : Verify whether we have δN = δ̄N

The separate universe approach is valid if :( k

aH

)2

≪ 3 (1 − ϵ1) ,
( k

aH

)2

≪ 16 (1 − ϵ1) ,

∣∣∣∣( k

aH

)2

GIJ

∣∣∣∣ ≪ H−2 |ρ,IJ |
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Role of dynamics and adiabatic direction

The equations of motion of the adiabatic and entropic directions are :

Q̇c =δcσσ̇

(
δN

N
−

√
3

2

δγ1

v2/3

)
+

N

v
Pc − Ωa

cQa

Ṗc =− δNvV ,c +Nv1/3

(
k2δac + V ;ac −

v2

N2
Raσσcσ̇

2

)
Qa + N

√
3

2
v1/3V ,c δγ1

− v

N
δcσσ̇δN1 − Ωc

aPa

⇒ Almost single field dynamics for the adiabatic direction : extra source term that comes from the coupling

to the first entropic direction. The effective mass condition is the only one that is affected∣∣∣∣( k

aH

)2

GIJ

∣∣∣∣ ≪ H−2 |ρ,IJ | ⇔
( k

aH

)2

δac ≪ H−2

∣∣∣∣V ,ac −
v2

N2
Raσσcσ̇

2

∣∣∣∣
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Mukhanov Sasaki variables

Next step : gauge fixing both approaches ⇒ write gauge invariant equations of motion : The

Mukhanov-Sasaki variables

Qa = eI
a

(
δϕI +

M2
pl G

IJπJ√
6v5/3θ

(
√

2δγ1 − δγ2)

)
, Q̄a = eI

a

(
¯δϕI +

M2
pl G

IJπJ√
3v̄5/3θ̄

¯δγ1

)
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Next step : gauge fixing both approaches ⇒ write gauge invariant equations of motion : The

Mukhanov-Sasaki variables

Qa = eI
a

(
δϕI +

M2
pl G

IJπJ√
6v5/3θ

(
√

2δγ1 − δγ2)

)
, Q̄a = eI

a

(
¯δϕI +

M2
pl G

IJπJ√
3v̄5/3θ̄

¯δγ1

)

Q̈σ + 3HQ̇σ +

[
k2 + mσσ − ω2

1 −
1

M2
pl a

3
∂t(

a3σ̇2

H
)

]
Qσ = 2∂t(ω1Q1)− 2(

V ,σ
σ̇

+
Ḣ

H
)ω1Q1

Q̈α + (3Hδαβ + 2Ωαβ)Q̇β+
[

k2δαβ + m2
αβ + 3HΩαβ + Ω̇αβ

]
Qβ =

δα12

[(
V ,σ
σ̇

+
Ḣ

H

)
ω1Qσ + ∂t (ω1Qσ)

]
m2
αβ = V ;αβ − Rασσβ +Ω2

αβ
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Mukhanov Sasaki variables
Next step : gauge fixing both approaches ⇒ write gauge invariant equations of motion : The

Mukhanov-Sasaki variables

Qa = eI
a

(
δϕI +

M2
pl G

IJπJ√
6v5/3θ

(
√

2δγ1 − δγ2)

)
, Q̄a = eI

a

(
¯δϕI +

M2
pl G

IJπJ√
3v̄5/3θ̄

¯δγ1

)

¨̄Qσ+3H ˙̄Qσ+

[
mσσ − ω2

1 −
1

M2
pl a

3
∂t(

a3σ̇2

H
)

]
Q̄σ = 2∂t(ω1Q̄1)−2(

V ,σ
σ̇

+
Ḣ

H
)ω1Q̄1+

√
ε

2
ηMpl H

2D̄(1)

¨̄Qα + (3Hδαβ + 2Ωαβ) ˙̄Qβ+
[

m2
αβ + 3HΩαβ + Ω̇αβ

]
Q̄β =

δα12

[(
V ,σ
σ̇

+
Ḣ

H

)
ω1Q̄σ + ∂t (ω1Q̄σ)

]
+ 2

√
2εHMplω1δ1cD̄(1)

m2
αβ = V ;αβ −Rασσβ +Ω2

αβ

⇒ Only works if we impose a ”diffeomorphism constraint” in SU.
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Conclusion and next steps

• The SU approach works as long as we are at a big enough scale and our fields are heavy enough

• Works in all gauges if we start from CPT and go to large scales

• Doesn’t necessarily work if we try to gauge fix directly in SU

• next steps : go beyond the leading order, allow the perturbation to evolve non linearly as well ⇒ order

three Hamiltonian theory.

• Large deviation principle in inflation → analytical asymptotical power spectrum in stochastic inflation

• Long term goals : find observables from multifield stochastic inflation models.
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The end

Thank You

for listening
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Spatially flat gauge

CPT

Spatially flat gauge :

• δγ1 = δγ2 = 0

⇒ = ˙δγ1 = ˙δγ2 = 0

⇒ δN

N
= − σ̇δσ

Nθ

SU

Spatially flat gauge :

• δ̄γ1 = 0

⇒ = ˙̄δγ1 = 0

⇒ δ̄N

N
= −2

3

M2
pl

θ2

(
σ̇

vN
¯δπσ + V ,c δ̄c

)

Both gauges are properly defined, BUT clear discrepancy because we don’t have
δN

N
=

δ̄N

N
.

A proper spatially flat gauge fixing in the SU framework does not lead to a spatially flat gauge fixed CPT

approach taken to large scales.
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uniform expansion gauge

CPT

Uniform expansion gauge :

• δγ1 = 0, δN1 = 0

⇒ = ˙δγ1 = 0

• Still one unfixed gauge mode

⇒ δN

N
=− 2

3

M2
pl

θ2

(
σ̇

vN
δπσ + V ,c δc

)
−

2M4
pl k

2

3
√

6v4/3θ2
δγ2

SU

Uniform expansion gauge :

• δ̄γ1 = 0

⇒ = ˙̄δγ1 = 0

⇒ δ̄N

N
= −2

3

M2
pl

θ2

(
σ̇

vN
¯δπσ + V ,c δ̄c

)

The CPT framework is not completely gauge fixed, BUT we have matched two gauge fixing procedures at l

large scales :
δN

N
=

δ̄N

N
.
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Short term questions

Same effort but in Jordan Frame

We know that such models are classically equivalent to multifield models with GIJ = δIJ but with non minimal

couplings to gravity. Kaiser 2010 Geller+ 2022

Proceed with the same computations ⇒ we get a fourth condition which can be seen as a derivative w.r.t δϕI

of the third condition.

Where should we coarse grain ?

We have coarse grained our theory at hubble scale ⇒ not a problem as long as SR because of scale

invariance. What if we do not have scale invariance (→ often happens in multifield models) ?

⇒ coarse grain at a different scale : at adiabatic effective mass scale ?

November 21, 2024 18/18

https://arxiv.org/abs/1003.1159
https://arxiv.org/abs/2205.04471


Third order Hamiltonian

In langevin equation : what if ξϕ can evolve non lienarly as well ?

⇒ need for third order Hamiltonian.

Questions and more applications of said hamiltonian :

• How/where to coarse grain if we want to do SU : sub horizon and superhorizon scales mix

• How will gauge fixing work in this approach, even without going to SU. Already very technical at second

order Artigas+ 2023

• Recently : many debates on loop corrections in inflation with different results in different gauges → no

gauge fixing a priori so could contribute to this discussion

• Same story for the total derivatives in this debate : not an issue in Hamiltonian theory

• backreaction of IR modes on UV modes

Once all of this is done, we are only half way : still need to solve the Langevin equation and make observanble

predictions.
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Third order hamiltonian

We limited ourselves to linear evolution for the sub horizon modes, i.e. the second order hamiltonian → lets

go one step further : ongoing work with Matteo Braglia, Julien Grain and Lucas Pinol.

A few preliminary steps : Find gauge invariant variables at second order, compute constraints at third order.

δϕI =QI − 1

2
ΓI

JKQJQK +
1

3

(
ΓI

JKΓ
J
LM − 1

2
ΓI

MK ,L

)
QKQLQM

δπI =PI + ΓK
IJ π̄KQJ + ΓK

IJPKQJ +
1

2

(
ΓS

IJ,K − ΓS
IRΓ

R
JK + ΓR

IJΓ
S
RK

)
π̄SQJQK

+
(

3ΓK
IM ,L +ΓK

IRΓ
R
LM + 3ΓR

IMΓ
K
RL

)
PKQLQM

+
(
ΓS

IJ ,ML −2ΓS
IK ,J Γ

K
LM + 3ΓS

KM ,L Γ
K
IJ − ΓS

IJ ,K Γ
K
LM + 2ΓK

IJ ,L Γ
S
KM

+ ΓK
JM ,L Γ

S
IK + ΓK

IRΓ
R
LMΓ

S
KJ − 2ΓK

IJΓ
S
KRΓ

R
ML + ΓK

IJΓ
R
KMΓ

S
RL

+ 2ΓK
LMΓ

S
IRΓ

R
KJ + ΓK

LMΓ
R
IKΓ

S
RJ + ΓK

LMΓ
R
IJΓ

S
RK

)
QLQMQJ π̄S

F (3)
(
δϕI PI t

)
=δϕIPI +

1

2
ΓK

IJπKδϕ
IδϕJ +

1

2
ΓK

IJPKδϕ
IδϕJ +

1

6

(
ΓK

IJ L + ΓK
LRΓ

R
IJ

)
πKδϕ

IδϕJδϕL
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Large deviation principle

The large deviation principle : often used in particle physics to quantify the probability of rare events in

stochastic processes by describing the probability as a decaying exponential with a rate function. See review

Touchette 2008

Used in cosmology before, for Large Scale Structure Bernardeau+ 2015, and in soft de Sitter for inflation

Cohen+ 2022.

Our goal : solve stochastic inflation equations analytically, albeit asymptotically. e.g: do this in USR.

Other possibility : find the asymptotical PDF for the anisotropic stress. In Grain+ 2020, only second order

moments were computed, we’d go one step further.
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